Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372292

RESUMO

The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for neonatal surface data. We next derive a set of 283 cortical surface parcels from a sample of n = 261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adulto , Recém-Nascido , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Córtex Cerebral/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
2.
Neurochem Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088164

RESUMO

Depression and anxiety disorders are prevalent stress-related neuropsychiatric disorders and involve multiple molecular changes and dysfunctions across various brain regions. However, the specific and shared pathophysiological mechanisms occurring in these regions remain unclear. Previous research used a rat model of chronic mild stress (CMS) to segregate and identify depression-susceptible, anxiety-susceptible, and insusceptible groups; then the proteomes of six distinct brain regions (the hippocampus, prefrontal cortex, hypothalamus, pituitary, olfactory bulb, and striatum) were separately and quantitatively analyzed. To gain a comprehensive and systematic understanding of the molecular abnormalities, this study aimed to investigate and compare differential proteomics data from the six regions. Differentially expressed proteins (DEPs) were identified in between specific regions and across all regions and subjected to a series of bioinformatics analyses. Regional comparisons showed that stress-induced proteomic changes and corresponding gene ontology and pathway enrichments were largely distinct, attributable to differences in cell populations, protein compositions, and brain functions of these areas. Additionally, a notable degree of overlap in the significantly enriched terms was identified, potentially suggesting strong connections in the enrichment across different regions. Furthermore, intra-regional and inter-regional protein-protein interaction networks and drug-target-DEP networks were constructed. Integrated analysis of the three association networks in the six regions, along with the DisGeNET database, identified ten DEPs as potential targets for anti-depression/anxiety drugs. Collectively, these findings revealed commonalities and differences across different brain regions at the protein level induced by CMS, and identified several novel protein targets for the development of new therapeutics for depression and anxiety.

3.
JMIR Form Res ; 8: e48487, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170581

RESUMO

BACKGROUND: The incidence of major adverse cardiovascular events (MACEs) remains high in patients with acute myocardial infarction (AMI) who undergo percutaneous coronary intervention (PCI), and early prediction models to guide their clinical management are lacking. OBJECTIVE: This study aimed to develop machine learning-based early prediction models for MACEs in patients with newly diagnosed AMI who underwent PCI. METHODS: A total of 1531 patients with AMI who underwent PCI from January 2018 to December 2019 were enrolled in this consecutive cohort. The data comprised demographic characteristics, clinical investigations, laboratory tests, and disease-related events. Four machine learning models-artificial neural network (ANN), k-nearest neighbors, support vector machine, and random forest-were developed and compared with the logistic regression model. Our primary outcome was the model performance that predicted the MACEs, which was determined by accuracy, area under the receiver operating characteristic curve, and F1-score. RESULTS: In total, 1362 patients were successfully followed up. With a median follow-up of 25.9 months, the incidence of MACEs was 18.5% (252/1362). The area under the receiver operating characteristic curve of the ANN, random forest, k-nearest neighbors, support vector machine, and logistic regression models were 80.49%, 72.67%, 79.80%, 77.20%, and 71.77%, respectively. The top 5 predictors in the ANN model were left ventricular ejection fraction, the number of implanted stents, age, diabetes, and the number of vessels with coronary artery disease. CONCLUSIONS: The ANN model showed good MACE prediction after PCI for patients with AMI. The use of machine learning-based prediction models may improve patient management and outcomes in clinical practice.

4.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131337

RESUMO

The human cerebral cortex contains groups of areas that support sensory, motor, cognitive, and affective functions, often categorized as functional networks. These areas show stronger internal and weaker external functional connectivity (FC) and exhibit similar FC profiles within rather than between networks. Previous studies have demonstrated the development of these networks from nascent forms present before birth to their mature, adult-like topography in childhood. However, analyses often still use definitions based on adult functional networks. We aim to assess how this might lead to the misidentification of functional networks and explore potential consequences and solutions. Our findings suggest that even though adult networks provide only a marginally better than-chance description of the infant FC organization, misidentification was largely driven by specific areas. By restricting functional networks to areas showing adult-like network clustering, we observed consistent within-network FC both within and across scans and throughout development. Additionally, these areas were spatially closer to locations with low variability in network identity among adults. Our analysis aids in understanding the potential consequences of using adult networks "as is" and provides guidance for future research on selecting and utilizing functional network models based on the research question and scenario.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA