Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917015

RESUMO

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Assuntos
Lamina Tipo A , Lamina Tipo B , Lâmina Nuclear , Lâmina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Animais , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos
2.
Proc Natl Acad Sci U S A ; 120(8): e2219833120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787365

RESUMO

Lipoprotein lipase (LPL) is secreted into the interstitial spaces by parenchymal cells and then transported into capillaries by GPIHBP1. LPL carries out the lipolytic processing of triglyceride (TG)-rich lipoproteins (TRLs), but the tissue-specific regulation of LPL is incompletely understood. Plasma levels of TG hydrolase activity after heparin injection are often used to draw inferences about intravascular LPL levels, but the validity of these inferences is unclear. Moreover, plasma TG hydrolase activity levels are not helpful for understanding LPL regulation in specific tissues. Here, we sought to elucidate LPL regulation under thermoneutral conditions (30 °C). To pursue this objective, we developed an antibody-based method to quantify (in a direct fashion) LPL levels inside capillaries. At 30 °C, intracapillary LPL levels fell sharply in brown adipose tissue (BAT) but not heart. The reduced intracapillary LPL levels were accompanied by reduced margination of TRLs along capillaries. ANGPTL4 expression in BAT increased fourfold at 30 °C, suggesting a potential explanation for the lower intracapillary LPL levels. Consistent with that idea, Angptl4 deficiency normalized both LPL levels and TRL margination in BAT at 30 °C. In Gpihbp1-/- mice housed at 30 °C, we observed an ANGPTL4-dependent decrease in LPL levels within the interstitial spaces of BAT, providing in vivo proof that ANGPTL4 regulates LPL levels before LPL transport into capillaries. In conclusion, our studies have illuminated intracapillary LPL regulation under thermoneutral conditions. Our approaches will be useful for defining the impact of genetic variation and metabolic disease on intracapillary LPL levels and TRL processing.


Assuntos
Tecido Adiposo Marrom , Receptores de Lipoproteínas , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Anticorpos/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/metabolismo , Temperatura , Triglicerídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(44): e2313825120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871217

RESUMO

Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.


Assuntos
Lipase Lipoproteica , Receptores de Lipoproteínas , Anticorpos Monoclonais/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Humanos , Animais
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161290

RESUMO

Defects or deficiencies in nuclear lamins cause pathology in many cell types, and recent studies have implicated nuclear membrane (NM) ruptures as a cause of cell toxicity. We previously observed NM ruptures and progressive cell death in the developing brain of lamin B1-deficient mouse embryos. We also observed frequent NM ruptures and DNA damage in nuclear lamin-deficient fibroblasts. Factors modulating susceptibility to NM ruptures remain unclear, but we noted low levels of LAP2ß, a chromatin-binding inner NM protein, in fibroblasts with NM ruptures. Here, we explored the apparent link between LAP2ß and NM ruptures in nuclear lamin-deficient neurons and fibroblasts, and we tested whether manipulating LAP2ß expression levels would alter NM rupture frequency. In cortical plate neurons of lamin B1-deficient embryos, we observed a strong correlation between low LAP2ß levels and NM ruptures. We also found low LAP2ß levels and frequent NM ruptures in neurons of cultured Lmnb1-/- neurospheres. Reducing LAP2ß expression in Lmnb1-/- neurons with an siRNA markedly increased the NM rupture frequency (without affecting NM rupture duration), whereas increased LAP2ß expression eliminated NM ruptures and reduced DNA damage. Consistent findings were observed in nuclear lamin-deficient fibroblasts. Reduced LAP2ß expression increased NM ruptures, whereas increased LAP2ß expression virtually abolished NM ruptures. Increased LAP2ß expression nearly abolished NM ruptures in cells subjected to mechanical stress (an intervention that increases NM ruptures). Our studies showed that increasing LAP2ß expression bolsters NM integrity in nuclear lamin-deficient cells and markedly reduces NM rupture frequency.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Lamina Tipo B/deficiência , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Animais , Morte Celular , Diferenciação Celular , Córtex Cerebral/patologia , Dano ao DNA , Embrião de Mamíferos/metabolismo , Lamina Tipo A/deficiência , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Camundongos Knockout , Especificidade de Órgãos
5.
Proc Natl Acad Sci U S A ; 116(51): 25870-25879, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796586

RESUMO

Deficiencies in either lamin B1 or lamin B2 cause both defective migration of cortical neurons in the developing brain and reduced neuronal survival. The neuronal migration abnormality is explained by a weakened nuclear lamina that interferes with nucleokinesis, a nuclear translocation process required for neuronal migration. In contrast, the explanation for impaired neuronal survival is poorly understood. We hypothesized that the forces imparted on the nucleus during neuronal migration result in nuclear membrane (NM) ruptures, causing interspersion of nuclear and cytoplasmic contents-and ultimately cell death. To test this hypothesis, we bred Lmnb1-deficient mice that express a nuclear-localized fluorescent Cre reporter. Migrating neurons within the cortical plate of E18.5 Lmnb1-deficient embryos exhibited NM ruptures, evident by the escape of the nuclear-localized reporter into the cytoplasm and NM discontinuities by electron microscopy. The NM ruptures were accompanied by DNA damage and cell death. The NM ruptures were not observed in nonmigrating cells within the ventricular zone. NM ruptures, DNA damage, and cell death were also observed in cultured Lmnb1-/- and Lmnb2-/- neurons as they migrated away from neurospheres. To test whether mechanical forces on the cell nucleus are relevant to NM ruptures in migrating neurons, we examined cultured Lmnb1-/- neurons when exposed to external constrictive forces (migration into a field of tightly spaced silicon pillars). As the cells entered the field of pillars, there were frequent NM ruptures, accompanied by DNA damage and cell death.


Assuntos
Morte Celular/fisiologia , Movimento Celular/fisiologia , Lamina Tipo B/metabolismo , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Citoplasma/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Lamina Tipo B/genética , Camundongos , Camundongos Knockout , Neurônios/citologia , Lâmina Nuclear/genética
6.
Proc Natl Acad Sci U S A ; 116(10): 4307-4315, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765529

RESUMO

The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1's outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina-one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.


Assuntos
Lamina Tipo A , Lamina Tipo B , Lâmina Nuclear , Humanos , Núcleo Celular/metabolismo , Células HeLa , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/química , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Microscopia , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(40): 10100-10105, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224463

RESUMO

The nuclear lamina, an intermediate filament meshwork lining the inner nuclear membrane, is formed by the nuclear lamins (lamins A, C, B1, and B2). Defects or deficiencies in individual nuclear lamin proteins have been reported to elicit nuclear blebs (protrusions or outpouchings of the nuclear envelope) and increase susceptibility for nuclear membrane ruptures. It is unclear, however, how a complete absence of nuclear lamins would affect nuclear envelope morphology and nuclear membrane integrity (i.e., whether nuclear membrane blebs or protrusions would occur and, if not, whether cells would be susceptible to nuclear membrane ruptures). To address these issues, we generated mouse embryonic fibroblasts (MEFs) lacking all nuclear lamins. The nuclear lamin-deficient MEFs had irregular nuclear shapes but no nuclear blebs or protrusions. Despite a virtual absence of nuclear blebs, MEFs lacking nuclear lamins had frequent, prolonged, and occasionally nonhealing nuclear membrane ruptures. By transmission electron microscopy, the inner nuclear membrane in nuclear lamin-deficient MEFs have a "wavy" appearance, and there were discrete discontinuities in the inner and outer nuclear membranes. Nuclear membrane ruptures were accompanied by a large increase in DNA damage, as judged by γ-H2AX foci. Mechanical stress increased both nuclear membrane ruptures and DNA damage, whereas minimizing transmission of cytoskeletal forces to the nucleus had the opposite effects.


Assuntos
Dano ao DNA , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Laminas/deficiência , Membrana Nuclear/metabolismo , Estresse Mecânico , Animais , Embrião de Mamíferos/ultraestrutura , Fibroblastos/ultraestrutura , Camundongos , Camundongos Knockout , Membrana Nuclear/genética , Membrana Nuclear/ultraestrutura
8.
J Lipid Res ; 61(10): 1347-1359, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690595

RESUMO

For three decades, the LPL-specific monoclonal antibody 5D2 has been used to investigate LPL structure/function and intravascular lipolysis. 5D2 has been used to measure LPL levels, block the triglyceride hydrolase activity of LPL, and prevent the propensity of concentrated LPL preparations to form homodimers. Two early studies on the location of the 5D2 epitope reached conflicting conclusions, but the more convincing report suggested that 5D2 binds to a tryptophan (Trp)-rich loop in the carboxyl terminus of LPL. The same loop had been implicated in lipoprotein binding. Using surface plasmon resonance, we showed that 5D2 binds with high affinity to a synthetic LPL peptide containing the Trp-rich loop of human (but not mouse) LPL. We also showed, by both fluorescence and UV resonance Raman spectroscopy, that the Trp-rich loop binds lipids. Finally, we used X-ray crystallography to solve the structure of the Trp-rich peptide bound to a 5D2 Fab fragment. The Trp-rich peptide contains a short α-helix, with two Trps projecting into the antigen recognition site. A proline substitution in the α-helix, found in mouse LPL, is expected to interfere with several hydrogen bonds, explaining why 5D2 cannot bind to mouse LPL.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Lipase Lipoproteica/química , Lipase Lipoproteica/imunologia , Animais , Sítios de Ligação , Humanos , Camundongos , Triptofano
9.
J Lipid Res ; 61(3): 413-421, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31941672

RESUMO

Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ∼4 months of age, both male and female Zmpste24-/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.


Assuntos
Tecido Adiposo/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Tecido Adiposo/química , Alelos , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , Feminino , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Metaloendopeptidases/deficiência , Metaloendopeptidases/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos
10.
J Lipid Res ; 60(4): 869-879, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30598475

RESUMO

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), the protein that shuttles LPL to the capillary lumen, is essential for plasma triglyceride metabolism. When GPIHBP1 is absent, LPL remains stranded within the interstitial spaces and plasma triglyceride hydrolysis is impaired, resulting in severe hypertriglyceridemia. While the functions of GPIHBP1 in intravascular lipolysis are reasonably well understood, no one has yet identified DNA sequences regulating GPIHBP1 expression. In the current studies, we identified an enhancer element located ∼3.6 kb upstream from exon 1 of mouse Gpihbp1. To examine the importance of the enhancer, we used CRISPR/Cas9 genome editing to create mice lacking the enhancer (Gpihbp1Enh/Enh). Removing the enhancer reduced Gpihbp1 expression by >90% in the liver and by ∼50% in heart and brown adipose tissue. The reduced expression of GPIHBP1 was insufficient to prevent LPL from reaching the capillary lumen, and it did not lead to hypertriglyceridemia-even when mice were fed a high-fat diet. Compound heterozygotes (Gpihbp1Enh/- mice) displayed further reductions in Gpihbp1 expression and exhibited partial mislocalization of LPL (increased amounts of LPL within the interstitial spaces of the heart), but the plasma triglyceride levels were not perturbed. The enhancer element that we identified represents the first insight into DNA sequences controlling Gpihbp1 expression.


Assuntos
Tecido Adiposo Marrom/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Animais , Sistemas CRISPR-Cas/genética , Cromatina/genética , Coração , Humanos , Camundongos , Camundongos Endogâmicos , Receptores de Lipoproteínas/análise , Receptores de Lipoproteínas/metabolismo , Análise de Sequência de DNA , Triglicerídeos/sangue , Triglicerídeos/metabolismo
11.
J Lipid Res ; 59(4): 706-713, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29449313

RESUMO

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), an endothelial cell protein, binds LPL in the subendothelial spaces and transports it to the capillary lumen. In Gpihbp1-/- mice, LPL remains stranded in the subendothelial spaces, causing hypertriglyceridemia, but how Gpihbp1-/- mice respond to metabolic stress (e.g., cold exposure) has never been studied. In wild-type mice, cold exposure increases LPL-mediated processing of triglyceride-rich lipoproteins (TRLs) in brown adipose tissue (BAT), providing fuel for thermogenesis and leading to lower plasma triglyceride levels. We suspected that defective TRL processing in Gpihbp1-/- mice might impair thermogenesis and blunt the fall in plasma triglyceride levels. Indeed, Gpihbp1-/- mice exhibited cold intolerance, but the effects on plasma triglyceride levels were paradoxical. Rather than falling, the plasma triglyceride levels increased sharply (from ∼4,000 to ∼15,000 mg/dl), likely because fatty acid release by peripheral tissues drives hepatic production of TRLs that cannot be processed. We predicted that the sharp increase in plasma triglyceride levels would not occur in Gpihbp1-/-Angptl4-/- mice, where LPL activity is higher and baseline plasma triglyceride levels are lower. Indeed, the plasma triglyceride levels in Gpihbp1-/-Angptl4-/- mice fell during cold exposure. Metabolic studies revealed increased levels of TRL processing in the BAT of Gpihbp1-/-Angptl4-/- mice.


Assuntos
Temperatura Baixa , Receptores de Lipoproteínas/sangue , Receptores de Lipoproteínas/deficiência , Termogênese , Triglicerídeos/sangue , Animais , Apolipoproteínas B/sangue , Camundongos , Camundongos Knockout
12.
Biochem Biophys Res Commun ; 504(4): 899-902, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30224066

RESUMO

Heterogeneity in the metabolic properties of adipocytes in white adipose tissue has been well documented. We sought to investigate metabolic heterogeneity in adipocytes of brown adipose tissue (BAT), focusing on heterogeneity in nutrient uptake. To explore the possibility of metabolic heterogeneity in brown adipocytes, we used nanoscale secondary ion mass spectrometry (NanoSIMS) to quantify uptake of lipids in adipocytes interscapular BAT and perivascular adipose tissue (PVAT) after an intravenous injection of triglyceride-rich lipoproteins (TRLs) containing [2H]triglycerides (2H-TRLs). The uptake of deuterated lipids into brown adipocytes was quantified by NanoSIMS. We also examined 13C enrichment in brown adipocytes after administering [13C]glucose or 13C-labeled mixed fatty acids by gastric gavage. The uptake of 2H-TRLs-derived lipids into brown adipocytes was heterogeneous, with 2H enrichment in adjacent adipocytes varying by more than fourfold. We also observed substantial heterogeneity in 13C enrichment in adjacent brown adipocytes after administering [13C]glucose or [13C]fatty acids by gastric gavage. The uptake of nutrients by adjacent brown adipocytes within a single depot is variable, suggesting that there is heterogeneity in the metabolic properties of brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Nutrientes/farmacocinética , Espectrometria de Massa de Íon Secundário/métodos , Animais , Isótopos de Carbono/análise , Ácidos Graxos/farmacocinética , Glucose/farmacocinética , Lipídeos/farmacocinética , Lipoproteínas/administração & dosagem , Lipoproteínas/farmacocinética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Lipoproteínas/genética
13.
J Lipid Res ; 58(7): 1453-1461, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28476858

RESUMO

Mutation of conserved cysteines in proteins of the Ly6 family cause human disease-chylomicronemia in the case of glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1) and paroxysmal nocturnal hemoglobinuria in the case of CD59. A mutation in a conserved cysteine in CD59 prevented the protein from reaching the surface of blood cells. In contrast, mutation of conserved cysteines in human GPIHBP1 had little effect on GPIHBP1 trafficking to the surface of cultured CHO cells. The latter findings were somewhat surprising and raised questions about whether CHO cell studies accurately model the fate of mutant GPIHBP1 proteins in vivo. To explore this concern, we created mice harboring a GPIHBP1 cysteine mutation (p.C63Y). The p.C63Y mutation abolished the ability of mouse GPIHBP1 to bind LPL, resulting in severe chylomicronemia. The mutant GPIHBP1 was detectable by immunohistochemistry on the surface of endothelial cells, but the level of expression was ∼70% lower than in WT mice. The mutant GPIHBP1 protein in mouse tissues was predominantly monomeric. We conclude that mutation of a conserved cysteine in GPIHBP1 abolishes the ability of GPIHBP1 to bind LPL, resulting in mislocalization of LPL and severe chylomicronemia. The mutation reduced but did not eliminate GPIHBP1 on the surface of endothelial cells in vivo.


Assuntos
Sequência Conservada , Cisteína , Lipase Lipoproteica/metabolismo , Mutação , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Lipase Lipoproteica/genética , Camundongos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lipoproteínas/genética , Triglicerídeos/sangue
14.
J Lipid Res ; 58(1): 208-215, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875259

RESUMO

GPIHBP1, an endothelial cell protein, binds LPL in the interstitial spaces and shuttles it to its site of action inside blood vessels. For years, studies of human GPIHBP1 have been hampered by an absence of useful antibodies. We reasoned that monoclonal antibodies (mAbs) against human GPIHBP1 would be useful for 1) defining the functional relevance of GPIHBP1's Ly6 and acidic domains to the binding of LPL; 2) ascertaining whether human GPIHBP1 is expressed exclusively in capillary endothelial cells; and 3) testing whether GPIHBP1 is detectable in human plasma. Here, we report the development of a panel of human GPIHBP1-specific mAbs. Two mAbs against GPIHBP1's Ly6 domain, RE3 and RG3, abolished LPL binding, whereas an antibody against the acidic domain, RF4, did not. Also, mAbs RE3 and RG3 bound with reduced affinity to a mutant GPIHBP1 containing an Ly6 domain mutation (W109S) that abolishes LPL binding. Immunohistochemistry studies with the GPIHBP1 mAbs revealed that human GPIHBP1 is expressed only in capillary endothelial cells. Finally, we created an ELISA that detects GPIHBP1 in human plasma. That ELISA should make it possible for clinical lipidologists to determine whether plasma GPIHBP1 levels are a useful biomarker of metabolic or vascular disease.


Assuntos
Anticorpos Monoclonais/imunologia , Lipase Lipoproteica/imunologia , Receptores de Lipoproteínas/imunologia , Triglicerídeos/metabolismo , Animais , Sítios de Ligação/imunologia , Linhagem Celular , Drosophila , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Humanos , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/isolamento & purificação , Camundongos , Receptores de Lipoproteínas/genética , Triglicerídeos/imunologia
15.
Hum Mol Genet ; 24(10): 2826-40, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652409

RESUMO

Neurons in the brain produce lamin C but almost no lamin A, a consequence of the removal of prelamin A transcripts by miR-9, a brain-specific microRNA. We have proposed that miR-9-mediated regulation of prelamin A in the brain could explain the absence of primary neurological disease in Hutchinson-Gilford progeria syndrome, a genetic disease caused by the synthesis of an internally truncated form of farnesyl-prelamin A (progerin). This explanation makes sense, but it is not entirely satisfying because it is unclear whether progerin-even if were expressed in neurons-would be capable of eliciting neuropathology. To address that issue, we created a new Lmna knock-in allele, Lmna(HG-C), which produces progerin transcripts lacking an miR-9 binding site. Mice harboring the Lmna(HG-C) allele produced progerin in neurons, but they had no pathology in the central nervous system. However, these mice invariably developed esophageal achalasia, and the enteric neurons and nerve fibers in gastrointestinal tract were markedly abnormal. The same disorder, achalasia, was observed in genetically modified mice that express full-length farnesyl-prelamin A in neurons (Zmpste24-deficient mice carrying two copies of a Lmna knock-in allele yielding full-length prelamin A transcripts lacking a miR-9 binding site). Our findings indicate that progerin and full-length farnesyl-prelamin A are toxic to neurons of the enteric nervous system.


Assuntos
Sistema Nervoso Entérico/patologia , Acalasia Esofágica/genética , Lamina Tipo A/genética , Neurônios/metabolismo , Prenilação de Proteína , Animais , Acalasia Esofágica/patologia , Feminino , Técnicas de Introdução de Genes , Lamina Tipo A/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Mutação , Neurônios/patologia , Interferência de RNA
16.
Exp Dermatol ; 26(11): 1134-1136, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28418591

RESUMO

Mutations in SLURP1, a secreted protein of keratinocytes, cause a palmoplantar keratoderma (PPK) known as mal de Meleda. Slurp1 deficiency in mice faithfully recapitulates the human disease, with increased keratinocyte proliferation and thickening of the epidermis on the volar surface of the paws. There has long been speculation that SLURP1 serves as a ligand for a receptor that regulates keratinocyte growth and differentiation. We were intrigued that mutations leading to increased signalling through the epidermal growth factor receptor (EGFR) cause PPK. Here, we sought to determine whether reducing EGFR signalling would ameliorate the PPK associated with SLURP1 deficiency. To address this issue, we bred Slurp1-deficient mice that were homozygous for a hypomorphic Egfr allele. The hypomorphic Egfr allele, which leads to reduced EGFR signalling in keratinocytes, did not ameliorate the PPK elicited by SLURP1 deficiency, suggesting that SLURP1 deficiency causes PPK independently (or downstream) from the EGFR pathway.


Assuntos
Antígenos Ly/genética , Antígenos Ly/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ceratodermia Palmar e Plantar/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Alelos , Animais , Genótipo , Ceratodermia Palmar e Plantar/patologia , Masculino , Camundongos Knockout , Fenótipo , Transdução de Sinais/genética , Ativador de Plasminogênio Tipo Uroquinase/deficiência
17.
Hum Mol Genet ; 23(6): 1506-15, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24203701

RESUMO

Lamins A and C (products of the LMNA gene) are found in roughly equal amounts in peripheral tissues, but the brain produces mainly lamin C and little lamin A. In HeLa cells and fibroblasts, the expression of prelamin A (the precursor to lamin A) can be reduced by miR-9, but the relevance of those cell culture studies to lamin A regulation in the brain was unclear. To address this issue, we created two new Lmna knock-in alleles, one (Lmna(PLAO-5NT)) with a 5-bp mutation in a predicted miR-9 binding site in prelamin A's 3' UTR, and a second (Lmna(PLAO-UTR)) in which prelamin A's 3' UTR was replaced with lamin C's 3' UTR. Neither allele had significant effects on lamin A levels in peripheral tissues; however, both substantially increased prelamin A transcript levels and lamin A protein levels in the cerebral cortex and the cerebellum. The increase in lamin A expression in the brain was more pronounced with the Lmna(PLAO-UTR) allele than with the Lmna(PLAO-5NT) allele. With both alleles, the increased expression of prelamin A transcripts and lamin A protein was greater in the cerebral cortex than in the cerebellum. Our studies demonstrate the in vivo importance of prelamin A's 3' UTR and its miR-9 binding site in regulating lamin A expression in the brain. The reduced expression of prelamin A in the brain likely explains why children with Hutchinson-Gilford progeria syndrome (a progeroid syndrome caused by a mutant form of prelamin A) are spared from neurodegenerative disease.


Assuntos
Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Lamina Tipo A/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Progéria/genética , Precursores de Proteínas/genética , Regiões 3' não Traduzidas , Alelos , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Lamina Tipo A/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mutação , Progéria/metabolismo , Progéria/patologia
18.
Proc Natl Acad Sci U S A ; 110(21): E1923-32, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650370

RESUMO

The role of protein farnesylation in lamin A biogenesis and the pathogenesis of progeria has been studied in considerable detail, but the importance of farnesylation for the B-type lamins, lamin B1 and lamin B2, has received little attention. Lamins B1 and B2 are expressed in nearly every cell type from the earliest stages of development, and they have been implicated in a variety of functions within the cell nucleus. To assess the importance of protein farnesylation for B-type lamins, we created knock-in mice expressing nonfarnesylated versions of lamin B1 and lamin B2. Mice expressing nonfarnesylated lamin B2 developed normally and were free of disease. In contrast, mice expressing nonfarnesylated lamin B1 died soon after birth, with severe neurodevelopmental defects and striking nuclear abnormalities in neurons. The nuclear lamina in migrating neurons was pulled away from the chromatin so that the chromatin was left "naked" (free from the nuclear lamina). Thus, farnesylation of lamin B1--but not lamin B2--is crucial for brain development and for retaining chromatin within the bounds of the nuclear lamina during neuronal migration.


Assuntos
Encéfalo/embriologia , Movimento Celular/fisiologia , Cromatina/metabolismo , Lamina Tipo B/metabolismo , Lâmina Nuclear/metabolismo , Prenilação de Proteína/fisiologia , Animais , Cromatina/genética , Lamina Tipo B/genética , Camundongos , Camundongos Transgênicos , Lâmina Nuclear/genética
19.
Hum Mol Genet ; 20(18): 3537-44, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21659336

RESUMO

Nuclear lamins are usually classified as A-type (lamins A and C) or B-type (lamins B1 and B2). A-type lamins have been implicated in multiple genetic diseases but are not required for cell growth or development. In contrast, B-type lamins have been considered essential in eukaryotic cells, with crucial roles in DNA replication and in the formation of the mitotic spindle. Knocking down the genes for B-type lamins (LMNB1, LMNB2) in HeLa cells has been reported to cause apoptosis. In the current study, we created conditional knockout alleles for mouse Lmnb1 and Lmnb2, with the goal of testing the hypothesis that B-type lamins are crucial for the growth and viability of mammalian cells in vivo. Using the keratin 14-Cre transgene, we bred mice lacking the expression of both Lmnb1 and Lmnb2 in skin keratinocytes (Lmnb1(Δ/Δ)Lmnb2(Δ/Δ)). Lmnb1 and Lmnb2 transcripts were absent in keratinocytes of Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice, and lamin B1 and lamin B2 proteins were undetectable. But despite an absence of B-type lamins in keratinocytes, the skin and hair of Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice developed normally and were free of histological abnormalities, even in 2-year-old mice. After an intraperitoneal injection of bromodeoxyuridine (BrdU), similar numbers of BrdU-positive keratinocytes were observed in the skin of wild-type and Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice. Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) keratinocytes did not exhibit aneuploidy, and their growth rate was normal in culture. These studies challenge the concept that B-type lamins are essential for proliferation and vitality of eukaryotic cells.


Assuntos
Proliferação de Células , Cabelo/crescimento & desenvolvimento , Queratinócitos/citologia , Lamina Tipo B/deficiência , Pele/crescimento & desenvolvimento , Células 3T3 , Animais , Células Cultivadas , Feminino , Cabelo/metabolismo , Células HeLa , Humanos , Queratinócitos/metabolismo , Lamina Tipo B/genética , Masculino , Camundongos , Camundongos Knockout , Pele/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 32(2): 230-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22173228

RESUMO

OBJECTIVE: Gpihbp1-deficient (Gpihbp1-/-) mice lack the ability to transport lipoprotein lipase to the capillary lumen, resulting in mislocalization of lipoprotein lipase within tissues, defective lipolysis of triglyceride-rich lipoproteins, and chylomicronemia. We asked whether GPIHBP1 deficiency and mislocalization of catalytically active lipoprotein lipase would alter the composition of triglycerides in adipose tissue or perturb the expression of lipid biosynthetic genes. We also asked whether perturbations in adipose tissue composition and gene expression, if they occur, would be accompanied by reciprocal metabolic changes in the liver. METHODS AND RESULTS: The chylomicronemia in Gpihbp1-/- mice was associated with reduced levels of essential fatty acids in adipose tissue triglycerides and increased expression of lipid biosynthetic genes. The liver exhibited the opposite changes: increased levels of essential fatty acids in triglycerides and reduced expression of lipid biosynthetic genes. CONCLUSIONS: Defective lipolysis in Gpihbp1-/- mice causes reciprocal metabolic perturbations in adipose tissue and liver. In adipose tissue, the essential fatty acid content of triglycerides is reduced and lipid biosynthetic gene expression is increased, whereas the opposite changes occur in the liver.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Receptores de Lipoproteínas/deficiência , Animais , Ácidos Graxos/metabolismo , Lipólise/fisiologia , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Receptores de Lipoproteínas/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA