Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Curr Issues Mol Biol ; 46(5): 3877-3905, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785509

RESUMO

Chronic kidney disease (CKD) stands as a prominent non-communicable ailment, significantly impacting life expectancy. Physiopathology stands mainly upon the triangle represented by parathormone-Vitamin D-Fibroblast Growth Factor-23. Parathormone (PTH), the key hormone in mineral homeostasis, is one of the less easily modifiable parameters in CKD; however, it stands as a significant marker for assessing the risk of complications. The updated "trade-off hypothesis" reveals that levels of PTH spike out of the normal range as early as stage G2 CKD, advancing it as a possible determinant of systemic damage. The present review aims to review the effects exhibited by PTH on several organs while linking the molecular mechanisms to the observed actions in the context of CKD. From a diagnostic perspective, PTH is the most reliable and accessible biochemical marker in CKD, but its trend bears a higher significance on a patient's prognosis rather than the absolute value. Classically, PTH acts in a dichotomous manner on bone tissue, maintaining a balance between formation and resorption. Under the uremic conditions of advanced CKD, the altered intestinal microbiota majorly tips the balance towards bone lysis. Probiotic treatment has proven reliable in animal models, but in humans, data are limited. Regarding bone status, persistently high levels of PTH determine a reduction in mineral density and a concurrent increase in fracture risk. Pharmacological manipulation of serum PTH requires appropriate patient selection and monitoring since dangerously low levels of PTH may completely inhibit bone turnover. Moreover, the altered mineral balance extends to the cardiovascular system, promoting vascular calcifications. Lastly, the involvement of PTH in the Renin-Angiotensin-Aldosterone axis highlights the importance of opting for the appropriate pharmacological agent should hypertension develop.

2.
Int J Mol Sci ; 23(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35563643

RESUMO

Rheumatoid Arthritis (RA) is among the most prevalent and impactful rheumatologic chronic autoimmune diseases (AIDs) worldwide. Within a framework that recognizes both immunological activation and inflammatory pathways, the exact cause of RA remains unclear. It seems however, that RA is initiated by a combination between genetic susceptibility, and environmental triggers, which result in an auto-perpetuating process. The subsequently, systemic inflammation associated with RA is linked with a variety of extra-articular comorbidities, including cardiovascular disease (CVD), resulting in increased mortality and morbidity. Hitherto, vast evidence demonstrated the key role of non-coding RNAs such as microRNAs (miRNAs) in RA, and in RA-CVD related complications. In this descriptive review, we aim to highlight the specific role of miRNAs in autoimmune processes, explicitly on their regulatory roles in the pathogenesis of RA, and its CV consequences, their main role as novel biomarkers, and their possible role as therapeutic targets.


Assuntos
Artrite Reumatoide , Doenças Cardiovasculares , Cardiopatias , MicroRNAs , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Biomarcadores/metabolismo , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/genética , Cardiopatias/complicações , Humanos , Inflamação/complicações , Inflamação/genética , MicroRNAs/metabolismo
3.
Medicina (Kaunas) ; 58(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36556919

RESUMO

One of the essential regulators of arterial blood pressure, the renin-angiotensin-aldosterone system (RAAS) seems to be one of the most complex mechanisms in the human body. Since the discovery of its key components and their actions, new substances and functions are still being unraveled. The main pathway begins with the secretion of renin in the kidney and culminates with the synthesis of angiotensin II (Ang II)-a strong vasoconstrictor-thanks to the angiotensin-converting enzyme (ACE). Research conducted in 2000 identified another enzyme, named ACE2, that converts Ang II into Ang-(1-7), a heptapeptide with opposing effects to those of Ang II: vasodilation and anti-inflammatory properties. This particular enzyme became of paramount importance during the last two decades, as a result of the confrontation of the human race with life-threatening epidemics. Multiple studies have been performed in order to uncover the link between ACE2 and human coronaviruses, the results of which we systemized in order to create an overview of the pathogenic mechanism. Human coronaviruses, such as SARS-CoV and SARS-CoV-2, attach to ACE2 via their spike proteins (S), causing the destruction of the enzyme. Because ACE2 limits the production of Ang II (by converting it into Ang-(1-7)), its destruction leads to a dysregulated inflammatory response. The purpose of this review is to decipher the complex pathophysiological mechanisms underlying the multiorgan complications (oral, cardiac, pulmonary, systemic) that appear as a result of the interaction of the SARS CoV-2 virus with the angiotensin-converting enzyme type 2.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Angiotensinas
4.
Am J Physiol Renal Physiol ; 309(7): F583-94, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26224718

RESUMO

When introduced clinically 6 years ago, renal denervation was thought to be the solution for all patients whose blood pressure could not be controlled by medication. The initial two studies, SYMPLICITY HTN-1 and HTN-2, demonstrated great magnitudes of blood pressure reduction within 6 mo of the procedure and were based on a number of assumptions that may not have been true, including strict adherence to medication and absence of white-coat hypertension. The SYMPLICITY HTN-3 trial controlled for all possible factors believed to influence the outcome, including the addition of a sham arm, and ultimately proved the demise of the initial overly optimistic expectations. This trial yielded a much lower blood pressure reduction compared with the previous SYMPLICITY trials. Since its publication in 2014, there have been many analyses to try and understand what accounted for the differences. Of all the variables examined that could influence blood pressure outcomes, the extent of the denervation procedure was determined to be inadequate. Beyond this, the physiological mechanisms that account for the heterogeneous fall in arterial pressure following renal denervation remain unclear, and experimental studies indicate dependence on more than simply reduced renal sympathetic activity. These and other related issues are discussed in this paper. Our perspective is that renal denervation works if done properly and used in the appropriate patient population. New studies with new approaches and catheters and appropriate controls will be starting later this year to reassess the efficacy and safety of renal denervation in humans.


Assuntos
Denervação/métodos , Hipertensão Renal/cirurgia , Rim/cirurgia , Resistência a Medicamentos , Humanos , Hipertensão Renal/tratamento farmacológico , Circulação Renal , Simpatectomia
5.
Curr Hypertens Rep ; 16(8): 453, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899538

RESUMO

Recent technical advances have led to the development of a medical device that can reliably activate the carotid baroreflex with an acceptable degree of safety. Because activation of the sympathetic nervous system plays an important role in the pathogenesis of hypertension and heart failure, the unique ability of this device to chronically suppress central sympathetic outflow in a controlled manner suggests potential value in the treatment of these conditions. This notion is supported by both clinical and experimental animal studies, and the major aim of this article is to elucidate the physiological mechanisms that account for the favorable effects of baroreflex activation therapy in patients with resistant hypertension and heart failure. Illumination of the neurohormonal, renal, and cardiac actions of baroreflex activation is likely to provide the means for better identification of those patients that are most likely to respond favorably to this device-based therapy.


Assuntos
Barorreflexo/fisiologia , Doenças Cardiovasculares/terapia , Equipamentos e Provisões , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Coração/inervação , Coração/fisiologia , Humanos
6.
Am J Physiol Heart Circ Physiol ; 305(7): H1080-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913707

RESUMO

The sensitivity of baroreflex control of heart rate is depressed in subjects with obesity hypertension, which increases the risk for cardiac arrhythmias. The mechanisms are not fully known, and there are no therapies to improve this dysfunction. To determine the cardiovascular dynamic effects of progressive increases in body weight leading to obesity and hypertension in dogs fed a high-fat diet, 24-h continuous recordings of spontaneous fluctuations in blood pressure and heart rate were analyzed in the time and frequency domains. Furthermore, we investigated whether autonomic mechanisms stimulated by chronic baroreflex activation and renal denervation-current therapies in patients with resistant hypertension, who are commonly obese-restore cardiovascular dynamic control. Increases in body weight to ∼150% of control led to a gradual increase in mean arterial pressure to 17 ± 3 mmHg above control (100 ± 2 mmHg) after 4 wk on the high-fat diet. In contrast to the gradual increase in arterial pressure, tachycardia, attenuated chronotropic baroreflex responses, and reduced heart rate variability were manifest within 1-4 days on high-fat intake, reaching 130 ± 4 beats per minute (bpm) (control = 86 ± 3 bpm) and ∼45% and <20%, respectively, of control levels. Subsequently, both baroreflex activation and renal denervation abolished the hypertension. However, only baroreflex activation effectively attenuated the tachycardia and restored cardiac baroreflex sensitivity and heart rate variability. These findings suggest that baroreflex activation therapy may reduce the risk factors for cardiac arrhythmias as well as lower arterial pressure.


Assuntos
Barorreflexo , Terapia por Estimulação Elétrica , Frequência Cardíaca , Hipertensão/terapia , Rim/inervação , Obesidade/complicações , Simpatectomia/métodos , Taquicardia/prevenção & controle , Animais , Pressão Arterial , Modelos Animais de Doenças , Cães , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Obesidade/fisiopatologia , Taquicardia/etiologia , Taquicardia/fisiopatologia , Fatores de Tempo
7.
Life (Basel) ; 13(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109529

RESUMO

Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients diagnosed with HF had IHD as the underlying cause. Furthermore, IHD predicts a worse outcome for patients with HF, leading to a substantial increase in late morbidity, mortality, and healthcare costs. In recent years, new pharmacological therapies have emerged for the treatment of HF, such as sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, selective cardiac myosin activators, and oral soluble guanylate cyclase stimulators, demonstrating clear or potential benefits in patients with HF with reduced ejection fraction. Interventional strategies such as cardiac resynchronization therapy, cardiac contractility modulation, or baroreflex activation therapy might provide additional therapeutic benefits by improving symptoms and promoting reverse remodeling. Furthermore, cardiac regenerative therapies such as stem cell transplantation could become a new therapeutic resource in the management of HF. By analyzing the existing data from the literature, this review aims to evaluate the impact of new HF therapies in patients with IHD in order to gain further insight into the best form of therapeutic management for this large proportion of HF patients.

8.
Pharmaceutics ; 14(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35335911

RESUMO

Arterial hypertension (HTN) is one of the most prevalent entities globally, characterized by increased incidence and heterogeneous pathophysiology. Among possible etiologies, oxidative stress (OS) is currently extensively studied, with emerging evidence showing its involvement in endothelial dysfunction and in different cardiovascular diseases (CVD) such as HTN, as well as its potential as a therapeutic target. While there is a clear physiological equilibrium between reactive oxygen species (ROS) and antioxidants essential for many cellular functions, excessive levels of ROS lead to vascular cell impairment with decreased nitric oxide (NO) availability and vasoconstriction, which promotes HTN. On the other hand, transcription factors such as nuclear factor erythroid factor 2-related factor 2 (Nrf2) mediate antioxidant response pathways and maintain cellular reduction-oxidation homeostasis, exerting protective effects. In this review, we describe the relationship between OS and hypertension-induced endothelial dysfunction and the involvement and therapeutic potential of Nrf2 in HTN.

9.
Cells ; 11(17)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36078071

RESUMO

Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.


Assuntos
Estenose da Valva Aórtica , Calcinose , Valva Aórtica/patologia , Calcinose/tratamento farmacológico , Humanos , Estresse Oxidativo
10.
J Pers Med ; 12(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36556304

RESUMO

(1) Background: Pulmonary embolism (PE) represents the third most important cardiovascular cause of death after myocardial infarction and stroke. The proper management of this condition is dependent on adequate risk stratification, due to the life-threatening complications of more aggressive therapies such as thrombolysis. Copeptin is a surrogate marker of vasopressin which is found increased in several cardiovascular conditions. The Mastora score is an imagistic evaluation of the degree of pulmonary arteries thrombotic burden based on computed tomography angiography. In this study, we aimed to evaluate the diagnostic and prognostic role of copeptin in patients with acute PE. Furthermore, we analyzed the relationship between copeptin and Mastora score and their role in PE risk profiling. (2) Methods: We conducted a single center prospective study that included 112 patients with PE and 53 healthy volunteers. Clinical and paraclinical parameters, together with plasma levels of copeptin and the Mastora score, were evaluated in all patients after admission. (3) Results: Copeptin levels were significantly increased in PE patients compared with the general population (26.05 vs. 9.5 pmol/L, p < 0.001), while receiver operating characteristic (ROC) analysis revealed an AUC of 0.800 (95% CI 0.728−0.873, p < 0.001). Copeptin directly correlated with the Mastora score (r = 0.535, p = 0.011) and both parameters were strong predictors for adverse clinical events and death. Receiver operating characteristic (ROC) analysis for death within 30 days revealed a copeptin cut-off of 38.36 pmol/L, which presented a specificity of 79.6% and a sensitivity of 88.9%, and a Mastora score cut-off of 82 points, which presented a specificity of 74.8% and a sensitivity of 77.8%. (4) Conclusions: Our results showed that copeptin and the Mastora score are both correlated with adverse cardiovascular events and mortality in PE patients, and this may pave the way for their use in clinical practice, helping physicians to select the best therapeutical management.

11.
Biomed Res Int ; 2019: 8057803, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32090064

RESUMO

Pain continues to be a global unmet medical need, and the current recommendations for its management require a constant exploration of new drugs that target multiple pain mechanisms, with an improved safety profile and increased treatment adherence. Currently, the enriched distribution and localization within nociceptors of the selective channel blockers and the critical role played by sodium channels in neuronal excitability nominate isoforms as specific targets to generate innovative compounds. In the present report, we verified the hypothesis that coadministration of Protoxin-II, a selective sodium channel inhibitor, and trace elements has direct and improved antinociceptive effects. Groups of seven Wistar rats were treated intracerebroventricularly with a combination of MgCl2, CdCl2, and ZnCl2 and Protoxin-II, respectively, and with Protoxin-II alone (positive) or saline (negative) for controls. Evaluations were performed by nociception assay. Coadministration of these drugs caused an increase in the maximum possible effect of up to 40% as compared with the control groups. Our findings indicate that selective channel blockers continue to be an important nociception target and that the use of trace elements may provide simple but effective means of control over sodium channel blockers' risks, potentially lowering the necessary analgesic doses, thus improving the efficacy and safety profile.


Assuntos
Analgésicos/farmacologia , Medição da Dor/efeitos dos fármacos , Peptídeos/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Venenos de Aranha/farmacologia , Oligoelementos/farmacologia , Animais , Modelos Animais de Doenças , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Nociceptividade/efeitos dos fármacos , Nociceptores , Dor/tratamento farmacológico , Ratos , Ratos Wistar , Canais de Sódio/fisiologia
12.
Int J Pharm ; 566: 541-548, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31173801

RESUMO

The effect of mild hyperthermia (MHT) on nanoparticle (NP) accumulation in rat model liver metastasis and the contribution of neoplastic and non-neoplastic cells were characterized. CdSe/ZnS QD-doped poly(lactic-co-glycolic acid) (PLGA) NPs (155 ±â€¯10 nm) were delivered via the ileocolic vein to metastatic livers 15 min after localized MW irradiation (1 min, 41 °C) or in normothermia (37 °C, NT). Quantitative analysis of tissue sections by confocal fluorescence microscopy 1 h after NP injection showed no NP tumor accumulation in NT. On the contrary, MHT increased NP association with tumor, compared to normal tissue. Counterstaining of specific markers showed that the MHT effect is due to an increased NP endocytosis not only by tumor cells, but also by hepatocytes at the growing tumor edge and, to a minor extent, by tumor-associated macrophages. High-NP capturing hepatocytes, close to the tumor, may be a relevant phenomenon in MHT-induced increased targeting of NPs to liver metastasis, influencing their therapeutic efficacy.


Assuntos
Portadores de Fármacos/administração & dosagem , Hepatócitos/metabolismo , Hipertermia Induzida , Neoplasias Hepáticas/metabolismo , Nanopartículas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Animais , Compostos de Cádmio/administração & dosagem , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células de Kupffer/metabolismo , Neoplasias Hepáticas/secundário , Macrófagos/metabolismo , Masculino , Ratos , Compostos de Selênio/administração & dosagem , Sulfetos/administração & dosagem , Compostos de Zinco/administração & dosagem
13.
Front Physiol ; 9: 455, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760664

RESUMO

Aim: Activation of the sympathetic nervous system is common in resistant hypertension (RHT) and also in chronic kidney disease (CKD), a prevalent condition among resistant hypertensives. However, renal nerve ablation lowers blood pressure (BP) only in some patients with RHT. The influence of loss of nephrons per se on the antihypertensive response to renal denervation (RDNx) is unclear and was the focus of this study. Methods: Systemic hemodynamics and sympathetically mediated low frequency oscillations of systolic BP were determined continuously from telemetrically acquired BP recordings in rats before and after surgical excision of ∼80% of renal mass and subsequent RDNx. Results: After reduction of renal mass, rats fed a high salt (HS) diet showed sustained increases in mean arterial pressure (108 ± 3 mmHg to 128 ± 2 mmHg) and suppression of estimated sympathetic activity (∼15%), responses that did not occur with HS before renal ablation. After denervation of the remnant kidney, arterial pressure fell (to 104 ± 4 mmHg), estimated sympathetic activity and heart rate (HR) increased concomitantly, but these changes gradually returned to pre-denervation levels over 2 weeks of follow up. Subsequently, sympathoinhibition with clonidine did not alter arterial pressure while significantly suppressing estimated sympathetic activity and HR. Conclusion: These results indicate that RDNx does not chronically lower arterial pressure in this model of salt-sensitive hypertension associated with substantial nephron loss, but without ischemia and increased sympathetic activity, thus providing further insight into conditions likely to impact the antihypertensive response to renal-specific sympathoinhibition in subjects with CKD.

14.
Hypertension ; 68(1): 227-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27160198

RESUMO

Carotid bodies play a critical role in protecting against hypoxemia, and their activation increases sympathetic activity, arterial pressure, and ventilation, responses opposed by acute stimulation of the baroreflex. Although chemoreceptor hypersensitivity is associated with sympathetically mediated hypertension, the mechanisms involved and their significance in the pathogenesis of hypertension remain unclear. We investigated the chronic interactions of these reflexes in dogs with sympathetically mediated, obesity-induced hypertension based on the hypothesis that hypoxemia and tonic activation of carotid chemoreceptors may be associated with obesity. After 5 weeks on a high-fat diet, the animals experienced a 35% to 40% weight gain and increases in arterial pressure from 106±3 to 123±3 mm Hg and respiratory rate from 8±1 to 12±1 breaths/min along with hypoxemia (arterial partial pressure of oxygen=81±3 mm Hg) but eucapnia. During 7 days of carotid baroreflex activation by electric stimulation of the carotid sinus, tachypnea was attenuated, and hypertension was abolished before these variables returned to prestimulation values during a recovery period. After subsequent denervation of the carotid sinus region, respiratory rate decreased transiently in association with further sustained reductions in arterial partial pressure of oxygen (to 65±2 mm Hg) and substantial hypercapnia. Moreover, the severity of hypertension was attenuated from 125±2 to 116±3 mm Hg (45%-50% reduction). These findings suggest that hypoxemia may account for sustained stimulation of peripheral chemoreceptors in obesity and that this activation leads to compensatory increases in ventilation and central sympathetic outflow that contributes to neurogenically mediated hypertension. Furthermore, the excitatory effects of chemoreceptor hyperactivity are abolished by chronic activation of the carotid baroreflex.


Assuntos
Corpo Carotídeo , Hipertensão/fisiopatologia , Obesidade/fisiopatologia , Pressorreceptores/metabolismo , Taquipneia/fisiopatologia , Animais , Células Quimiorreceptoras/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Cães , Estimulação Elétrica/métodos , Hipertensão/complicações , Hipertensão/terapia , Hipóxia/etiologia , Hipóxia/fisiopatologia , Obesidade/complicações , Distribuição Aleatória , Taquipneia/etiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA