Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 10(14): 8224-8232, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497871

RESUMO

Nanocrystalline diamond (NCD) films grown on Si substrates by microwave plasma enhanced chemical vapor deposition (MWPECVD) were subjected to Ni-mediated graphitization to cover them with a conductive layer. Results of transmission electron microscopy including electron energy-loss spectroscopy of cross-sectional samples demonstrate that the oxide layer on Si substrates (∼5 nm native SiO2) has been damaged by microwave plasma during the early stage of NCD growth. During the heat treatment for graphitizing the NCD layer, the permeability or absence of the oxide barrier allow Ni nanoparticles to diffuse into the Si substrate and cause additional solid-state reactions producing pyramidal crystals of NiSi2 and SiC nanocrystals. The latter are found impinged into the NiSi2 pyramids but only when the interfacial oxide layer is absent, replaced by amorphous SiC. The complex phase morphology of the samples is also reflected in the temperature dependence of electrical conductivity, where multiple pathways of the electronic transport dominate in different temperature regions. We present models explaining the observed cascade of solid-state reactions and resulting electronic transport properties of such heterostructures.

2.
ACS Nano ; 13(10): 11522-11529, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31497949

RESUMO

Transparent and conductive films (TCFs) are of great technological importance. Their high transmittance, electrical conductivity, and mechanical strength make single-walled carbon nanotubes (SWCNTs) a good candidate for the raw material for TCFs. Despite the ballistic transport in individual SWCNTs, electrical conductivity of SWCNT networks is limited by low efficiency of charge tunneling between the tube elements. Here, we demonstrate that the nanotube network sheet resistance at high optical transmittance is decreased by more than 50% when fabricated on graphene. This is a comparable improvement as that obtained through gold chloride (AuCl3) doping. However, while Raman spectroscopy reveals substantial changes in spectral features of AuCl3 doped nanotubes, this does not occur with graphene. Instead, temperature-dependent transport measurements indicate that a graphene substrate reduces the tunneling barrier heights, while its parallel conductivity contribution is almost negligible. Finally, we show that combining the graphene substrate and AuCl3 doping, brings the SWCNT thin film sheet resistance down to 36 Ω/□.

3.
ACS Nano ; 13(4): 4621-4630, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30883098

RESUMO

Aberration-corrected transmission electron microscopy of the atomic structure of diamond-graphite interface after Ni-induced catalytic transformation reveals graphitic planes bound covalently to the diamond in the upright orientation. The covalent attachment, together with a significant volume expansion of graphite transformed from diamond, gives rise to uniaxial stress that is released through plastic deformation. We propose a comprehensive model explaining the Ni-mediated transformation of diamond to graphite and covalent bonding at the interface as well as the mechanism of relaxation of uniaxial stress. We also explain the mechanism of electrical transport through the graphitized surface of diamond. The result may thus provide a foundation for the catalytically driven formation of graphene-diamond nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA