Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(50): e2211308119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469774

RESUMO

Learned experiences are not necessarily consolidated into long-term memory (LTM) unless they are periodic and meaningful. LTM depends on de novo protein synthesis mediated by cyclic AMP response element-binding protein (CREB) activity. In Drosophila, two creb genes (crebA, crebB) and multiple CREB isoforms have reported influences on aversive olfactory LTM in response to multiple cycles of spaced conditioning. How CREB isoforms regulate LTM effector genes in various neural elements of the memory circuit is unclear, especially in the mushroom body (MB), a prominent associative center in the fly brain that has been shown to participate in LTM formation. Here, we report that i) spaced training induces crebB expression in MB α-lobe neurons and ii) elevating specific CREBB isoform levels in the early α/ß subpopulation of MB neurons enhances LTM formation. By contrast, learning from weak training iii) induces 5-HT1A serotonin receptor synthesis, iv) activates 5-HT1A in early α/ß neurons, and v) inhibits LTM formation. vi) LTM is enhanced when this inhibitory effect is relieved by down-regulating 5-HT1A or overexpressing CREBB. Our findings show that spaced training-induced CREBB antagonizes learning-induced 5-HT1A in early α/ß MB neurons to modulate LTM consolidation.


Assuntos
Proteínas de Drosophila , Corpos Pedunculados , Animais , Corpos Pedunculados/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Memória de Longo Prazo/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Drosophila melanogaster/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507985

RESUMO

Episodic events are frequently consolidated into labile memory but are not necessarily transferred to persistent long-term memory (LTM). Regulatory mechanisms leading to LTM formation are poorly understood, however, especially at the resolution of identified neurons. Here, we demonstrate enhanced LTM following aversive olfactory conditioning in Drosophila when the transcription factor cyclic AMP response element binding protein A (CREBA) is induced in just two dorsal-anterior-lateral (DAL) neurons. Our experiments show that this process is regulated by protein-gene interactions in DAL neurons: (1) crebA transcription is induced by training and repressed by crebB overexpression, (2) CREBA bidirectionally modulates LTM formation, (3) crebA overexpression enhances training-induced gene transcription, and (4) increasing membrane excitability enhances LTM formation and gene expression. These findings suggest that activity-dependent gene expression in DAL neurons during LTM formation is regulated by CREB proteins.


Assuntos
Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Memória de Longo Prazo/fisiologia , Transativadores/metabolismo , Animais , Condicionamento Clássico/fisiologia , Condicionamento Psicológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/genética , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Percepção Olfatória/fisiologia , Olfato/fisiologia , Transativadores/fisiologia
3.
Neurobiol Dis ; 114: 153-163, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524599

RESUMO

Parkinson's disease (PD) is a progressive motor neurodegenerative disorder, characterized by a selective loss of dopaminergic neurons in the substantia nigra. The complexity of disease etiology includes both genetic and environmental factors. No effective drug that can modify disease progression and protect dopamine neurons from degeneration is presently available. Human α-Synuclein A30P (A30P) is a mutant gene identified in early onset PD and showed to result selective dopamine neuron loss in transgenic A30P flies and mice. Paraquat (PQ) is an herbicide and an oxidative stress generator, linked to sporadic PD. We hypothesized that vital PD modifier genes are conserved across species and would show unique transcriptional changes to oxidative stress in animals expressing a PD-associated gene, such as A30P. We also hypothesized that manipulation of PD modifier genes would provide neuroprotection across species. To identify disease modifier genes, we performed two independently-duplicated experiments of microarray, capturing genome-wide transcriptional changes in A30P flies, chronically fed with PQ-contaminated food. We hypothesized that the best time point of identifying a disease modifier gene is at time when flies showed maximal combined toxicity of A30P transgene and PQ treatment during an early stage of disease and that effective disease modifiers gene are those showing transcriptional changes to oxidative stress in A30P expressing and not in wild type animals. Fly Neprilysin3 (Nep3) is one identified gene that is highly conserved. Its mouse and human homolog is endothelin-converting enzyme-1 (Ece1). To investigate the neuroprotective effect of Ece1, we used NS1 cells and mouse midbrain neurons expressing A30P, treated with or without PQ. We found that ECE1 expression protected against A30P toxicity on cell viability, on neurite outgrowth and ameliorated A30P accumulation in vitro. Expression of ECE1 in vivo suppressed dopamine neuron loss and alleviated the corresponding motor deficits in mice with A30P-expression. Our study leverages a new approach to identify disease modifier genes using a stress-enhanced PD animal model.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Enzimas Conversoras de Endotelina/biossíntese , Estresse Oxidativo/fisiologia , alfa-Sinucleína/biossíntese , alfa-Sinucleína/toxicidade , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Método Duplo-Cego , Drosophila , Enzimas Conversoras de Endotelina/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , alfa-Sinucleína/genética
4.
Eur J Neurosci ; 46(4): 1937-1953, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28677201

RESUMO

The testing of cognitive enhancers could benefit from the development of novel behavioural tasks that display better translational relevance for daily memory and permit the examination of potential targets in a within-subjects manner with less variability. We here outline an optimized spatial 'everyday memory' task. We calibrate it systematically by interrogating certain well-established determinants of memory and consider its potential for revealing novel features of encoding-related gene activation. Rats were trained in an event arena in which food was hidden in sandwells in a different location everyday. They found the food during an initial memory-encoding trial and were then required to remember the location in six alternative choice or probe trials at various time-points later. Training continued daily over a period of 4 months, realizing a stable high level of performance and characterized by delay-dependent forgetting over 24 h. Spaced but not massed access to multiple rewards enhanced the persistence of memory, as did post-encoding administration of the PDE4 inhibitor Rolipram. Quantitative PCR and then genome-wide analysis of gene expression led to a new observation - stronger gene-activation in hippocampus and retrosplenial cortex following spaced than massed training. In a subsidiary study, a separate group of animals replicated aspects of this training profile, going on to show enhanced memory when training was subject to post-encoding environmental novelty. Distinctive features of this protocol include its potential validity as a model of memory encoding used routinely by human subjects everyday, and the possibility of multiple within-subject comparisons to speed up assays of novel compounds.


Assuntos
Rememoração Mental/fisiologia , Nootrópicos/farmacologia , Recompensa , Pesquisa Translacional Biomédica/métodos , Animais , Córtex Cerebral/fisiologia , Perfilação da Expressão Gênica/métodos , Habituação Psicofisiológica/efeitos dos fármacos , Habituação Psicofisiológica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Rememoração Mental/efeitos dos fármacos , Ratos
5.
Proc Natl Acad Sci U S A ; 110(19): 7898-903, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610406

RESUMO

Memory is initially labile and gradually consolidated over time through new protein synthesis into a long-lasting stable form. Studies of odor-shock associative learning in Drosophila have established the mushroom body (MB) as a key brain structure involved in olfactory long-term memory (LTM) formation. Exactly how early neural activity encoded in thousands of MB neurons is consolidated into protein-synthesis-dependent LTM remains unclear. Here, several independent lines of evidence indicate that changes in two MB vertical lobe V3 (MB-V3) extrinsic neurons are required and contribute to an extended neural network involved in olfactory LTM: (i) inhibiting protein synthesis in MB-V3 neurons impairs LTM; (ii) MB-V3 neurons show enhanced neural activity after spaced but not massed training; (iii) MB-V3 dendrites, synapsing with hundreds of MB α/ß neurons, exhibit dramatic structural plasticity after removal of olfactory inputs; (iv) neurotransmission from MB-V3 neurons is necessary for LTM retrieval; and (v) RNAi-mediated down-regulation of oo18 RNA-binding protein (involved in local regulation of protein translation) in MB-V3 neurons impairs LTM. Our results suggest a model of long-term memory formation that includes a systems-level consolidation process, wherein an early, labile olfactory memory represented by neural activity in a sparse subset of MB neurons is converted into a stable LTM through protein synthesis in dendrites of MB-V3 neurons synapsed onto MB α lobes.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Memória de Longo Prazo/fisiologia , Corpos Pedunculados/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Cruzamentos Genéticos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Modelos Neurológicos , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transmissão Sináptica , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
6.
Mem Cognit ; 42(6): 965-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24643791

RESUMO

Although the benefits of spaced retrieval for long-term retention are well established, the majority of this work has involved spacing over relatively short intervals (on the order of seconds or minutes). In the present experiments, we evaluated the effectiveness of spaced retrieval across relatively short intervals (within a single session), as compared to longer intervals (between sessions spaced a day apart), for long-term retention (i.e., one day or one week). Across a series of seven experiments, participants (N = 536) learned paired associates to a criterion of 70 % accuracy and then received one test-feedback trial for each item. The test-feedback trial occurred within 10 min of reaching criterion (short lag) or one day later (long lag). Then, a final test occurred one day (Exps. 1-3) or one week (Exps. 4 and 5) after the test-feedback trial. Across the different materials and methods in Experiments 1-3, we found little benefit for the long-lag relative to the short-lag schedule in final recall performance-that is, no lag effect-but large effects on the retention of information from the test-feedback to the final test phase. The results from the experiments with the one-week retention interval (Exps. 4 and 5) indicated a benefit of the long-lag schedule on final recall performance (a lag effect), as well as on retention. This research shows that even when the benefits of lag are eliminated at a (relatively long) one-day retention interval, the lag effect reemerges after a one-week retention interval. The results are interpreted within an extension of the bifurcation model to the spacing effect.


Assuntos
Aprendizagem por Associação/fisiologia , Rememoração Mental/fisiologia , Retenção Psicológica/fisiologia , Adulto , Humanos , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 106(1): 310-5, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19104051

RESUMO

The ruslan (rus) mutant was previously identified in a behavioral screen for mutants defective in long-lasting memory, which consists of two consolidated memory types, anesthesia-resistant memory, and protein synthesis-dependent long-term memory (LTM). We demonstrate here that rus is a new allele of klingon (klg), which encodes a homophilic cell adhesion molecule. Klg is acutely required for LTM but not anesthesia-resistant memory formation, and Klg expression increases upon LTM induction. LTM formation also requires activity of the Notch cell-surface receptor. Although defects in Notch have been implicated in memory loss because of Alzheimer's disease, downstream signaling linking Notch to memory have not been determined. Strikingly, we found that Notch activity increases upon LTM induction and regulates Klg expression. Furthermore, Notch-induced enhancement of LTM is disrupted by a klg mutation. We propose that Klg is a downstream effector of Notch signaling that links Notch activity to memory.


Assuntos
Moléculas de Adesão Celular/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas do Olho/fisiologia , Memória , Receptores Notch/fisiologia , Anestesia/efeitos adversos , Animais , Moléculas de Adesão Celular/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Memória/efeitos dos fármacos , Mutação , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 105(34): 12399-404, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18701717

RESUMO

Angelman syndrome is a neurological disorder whose symptoms include severe mental retardation, loss of motor coordination, and sleep disturbances. The disease is caused by a loss of function of UBE3A, which encodes a HECT-domain ubiquitin ligase. Here, we generate a Drosophila model for the disease. The results of several experiments show that the functions of human UBE3A and its fly counterpart, dube3a, are similar. First, expression of Dube3a is enriched in the Drosophila nervous system, including mushroom bodies, the seat of learning and memory. Second, we have generated dube3a null mutants, and they appear normal externally, but display abnormal locomotive behavior and circadian rhythms, and defective long-term memory. Third, flies that overexpress Dube3a in the nervous system also display locomotion defects, dependent on the ubiquitin ligase activity. Finally, missense mutations in UBE3A alleles of Angelman syndrome patients alter amino acid residues conserved in the fly protein, and when introduced into dube3a, behave as loss-of-function mutations. The simplest model for Angelman syndrome is that in the absence of UBE3A, particular substrates fail to be ubiquitinated and proteasomally degraded, accumulate in the brain, and interfere with brain function. We have generated flies useful for genetic screens to identify Dube3a substrates. These flies overexpress Dube3a in the eye or wing and display morphological abnormalities, dependent on the critical catalytic cysteine. We conclude that dube3a mutants are a valid model for Angelman syndrome, with great potential for identifying the elusive UBE3A substrates relevant to the disease.


Assuntos
Síndrome de Angelman/genética , Proteínas de Drosophila/genética , Ubiquitina-Proteína Ligases/genética , Animais , Ritmo Circadiano/genética , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/fisiologia , Olho/química , Expressão Gênica , Humanos , Locomoção/genética , Morfogênese/genética , Mutação , Sistema Nervoso/química , Fenótipo , Ubiquitina-Proteína Ligases/fisiologia , Asas de Animais/química
9.
Nat Neurosci ; 10(12): 1578-86, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17982450

RESUMO

In humans and many other animals, memory consolidation occurs through multiple temporal phases and usually involves more than one neuroanatomical brain system. Genetic dissection of Pavlovian olfactory learning in Drosophila melanogaster has revealed multiple memory phases, but the predominant view holds that all memory phases occur in mushroom body neurons. Here, we demonstrate an acute requirement for NMDA receptors (NMDARs) outside of the mushroom body during long-term memory (LTM) consolidation. Targeted dsRNA-mediated silencing of Nmdar1 and Nmdar2 (also known as dNR1 or dNR2, respectively) in cholinergic R4m-subtype large-field neurons of the ellipsoid body specifically disrupted LTM consolidation, but not retrieval. Similar silencing of functional NMDARs in the mushroom body disrupted an earlier memory phase, leaving LTM intact. Our results clearly establish an anatomical site outside of the mushroom body involved with LTM consolidation, thus revealing both a distributed brain system subserving olfactory memory formation and the existence of a system-level memory consolidation in Drosophila.


Assuntos
Aprendizagem por Associação/fisiologia , Encéfalo/citologia , Memória/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Aprendizagem por Associação/efeitos dos fármacos , Comportamento Animal , Condicionamento Clássico , Drosophila , Proteínas de Drosophila/genética , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/fisiologia , Odorantes , RNA de Cadeia Dupla/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Fatores de Tempo
10.
iScience ; 24(12): 103506, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34934925

RESUMO

Long-term memory (LTM) formation requires consolidation processes to overcome interfering signals that erode memory formation. Olfactory memory in Drosophila involves convergent projection neuron (PN; odor) and dopaminergic neuron (DAN; reinforcement) input to the mushroom body (MB). How post-training DAN activity in the posterior lateral protocerebrum (PPL1) continues to regulate memory consolidation remains unknown. Here we address this question using targeted transgenes in behavior and electrophysiology experiments to show that (1) persistent post-training activity of PPL1-α2α'2 and PPL1-α3 DANs interferes with aversive LTM formation; (2) neuropeptide F (NPF) signaling blocks this interference in PPL1-α2α'2 and PPL1-α3 DANs after spaced training to enable LTM formation; and (3) training-induced NPF release and neurotransmission from two upstream dorsal-anterior-lateral (DAL2) neurons are required to form LTM. Thus, NPF signals from DAL2 neurons to specific PPL1 DANs disinhibit the memory circuit, ensuring that periodic events are remembered as consolidated LTM.

11.
J Neurosci ; 29(2): 414-24, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19144841

RESUMO

Genetic screens for Drosophila mutants defective in pavlovian olfactory memory have provided unique insight into the molecular basis of memory storage. Occasionally, these singular genetic lesions have been assembled into meaningful molecular pathways and neural circuitries. For the most part, however, these genes and their expression patterns in the CNS remain fragmented, demanding new clues from continued mutant screens. From a behavioral screen for long-term memory (LTM) mutants, we have identified ben (CG32594), which encodes a novel protein. Mutations of ben specifically disrupt LTM, leaving earlier memory phases intact. The role of ben appears physiological rather than developmental, because acutely induced expression of a ben(+) transgene in adults rescues the mutant's LTM defect. More interestingly, induced expression of ben(+) specifically in mushroom bodies (MBs), but not in the ellipsoid body of the central complex, is sufficient to rescue the mutant LTM defect. This suggests a role for ben in the MB during olfactory memory formation. We also provide evidence that BEN interacts genetically in both synaptic transmission and LTM formation with SCAMP, a synaptic protein known to be involved in vesicle recycling.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Drosophila/fisiologia , Transtornos da Memória/genética , Memória/fisiologia , Transmissão Sináptica/genética , Enzimas de Conjugação de Ubiquitina/fisiologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Comportamento Animal , Proteínas de Transporte/genética , Condicionamento Clássico/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/genética , Larva , Atividade Motora/genética , Corpos Pedunculados/metabolismo , Mutação/genética , Junção Neuromuscular/genética , Condutos Olfatórios/fisiologia , RNA Mensageiro/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
12.
PLoS Biol ; 5(10): e264, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17914903

RESUMO

Molecular and cellular studies have begun to unravel a neurobiological basis of olfactory processing, which appears conserved among vertebrate and invertebrate species. Studies have shown clearly that experience-dependent coding of odor identity occurs in "associative" olfactory centers (the piriform cortex in mammals and the mushroom body [MB] in insects). What remains unclear, however, is whether associative centers also mediate innate (spontaneous) odor discrimination and how ongoing experience modifies odor discrimination. Here we show in naïve flies that Galphaq-mediated signaling in MB modulates spontaneous discrimination of odor identity but not odor intensity (concentration). In contrast, experience-dependent modification (conditioning) of both odor identity and intensity occurs in MB exclusively via Galphas-mediated signaling. Our data suggest that spontaneous responses to odor identity and odor intensity discrimination are segregated at the MB level, and neural activity from MB further modulates olfactory processing by experience-independent Galphaq-dependent encoding of odor identity and by experience-induced Galphas-dependent encoding of odor intensity and identity.


Assuntos
Drosophila/fisiologia , Odorantes , Animais , Proteínas de Ligação ao GTP/fisiologia , Condutos Olfatórios , Transdução de Sinais
13.
PLoS Comput Biol ; 4(2): e1000026, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18463699

RESUMO

Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3'UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3'UTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Neurônios/química , Neurônios/metabolismo , Análise de Sequência de Proteína/métodos , Sinapses/química , Sinapses/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Ligação a RNA
14.
Neuron ; 40(5): 1003-11, 2003 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-14659098

RESUMO

Age-related memory impairment (AMI) is observed in many species. However, it is uncertain whether AMI results from a specific or a nonspecific decay in memory processing. In Drosophila, memory acquired after a single olfactory conditioning paradigm has three distinct phases: short-term memory (STM), middle-term memory (MTM), and longer-lasting anesthesia-resistant memory (ARM). Here, we demonstrate that age-related defects in olfactory memory are identical to those of the MTM mutant amnesiac (amn). Furthermore, amn flies do not exhibit an age-dependent decrease in memory, in contrast to other memory mutants. The absence of AMI in amn flies is restored by expression of an amn transgene predominantly in DPM cells. Thus, we propose that AMI in flies results from a specific decrease in amn-dependent MTM.


Assuntos
Envelhecimento/fisiologia , Proteínas de Drosophila/genética , Drosophila/fisiologia , Memória/fisiologia , Neuropeptídeos/genética , Envelhecimento/genética , Amnésia/genética , Amnésia/fisiopatologia , Animais , Aprendizagem da Esquiva/fisiologia , Drosophila/genética , Memória de Curto Prazo/fisiologia , Mutação
15.
J Neurosci ; 27(16): 4396-402, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442824

RESUMO

Tyrosine phosphorylation mediates multiple signal transduction pathways that play key roles in developmental processes and behavioral plasticity. The level of tyrosine phosphorylation is regulated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Extensive studies have investigated the roles of tyrosine kinases in memory formation. However, there were few studies on PTPs. To date, learning has been shown to be defective only for mouse knock-outs of PTPalpha, leukocyte common antigen-related, or PTPdelta. A major limitation of these studies arises from their inability to distinguish an acute (biochemical) impairment of memory formation from a more chronic abnormality in neurodevelopment. From a behavioral screen for defective long-term memory, we found chi mutants to disrupt expression of the PTP10D protein tyrosine phosphatase gene. We show that chi mutants are normal for learning, early memory, and anesthesia-resistant memory, whereas long-term memory specifically is abolished. Significantly, induction of a heat shock-PTP10D+ transgene before training fully rescues the memory defect of chi mutants, thereby demonstrating an acute role for PTP10D in behavioral plasticity. We show that PTP10D is widely expressed in the embryonic CNS and in the adult brain. Transgenic expression of upstream activating sequence-PTP10D+ in mushroom bodies is sufficient to rescue the memory defect of chi mutants. Our data clearly demonstrate that signaling through PTP10D in mushroom bodies is critical for the formation of long-term memory.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Memória/fisiologia , Corpos Pedunculados/enzimologia , Proteínas Tirosina Fosfatases/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/enzimologia , Drosophila/enzimologia
16.
Curr Biol ; 15(17): R700-13, 2005 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16139203

RESUMO

Unlike most organ systems, which have evolved to maintain homeostasis, the brain has been selected to sense and adapt to environmental stimuli by constantly altering interactions in a gene network that functions within a larger neural network. This unique feature of the central nervous system provides a remarkable plasticity of behavior, but also makes experimental investigations challenging. Each experimental intervention ramifies through both gene and neural networks, resulting in unpredicted and sometimes confusing phenotypic adaptations. Experimental dissection of mechanisms underlying behavioral plasticity ultimately must accomplish an integration across many levels of biological organization, including genetic pathways acting within individual neurons, neural network interactions which feed back to gene function, and phenotypic observations at the behavioral level. This dissection will be more easily accomplished for model systems such as Drosophila, which, compared with mammals, have relatively simple and manipulable nervous systems and genomes. The evolutionary conservation of behavioral phenotype and the underlying gene function ensures that much of what we learn in such model systems will be relevant to human cognition. In this essay, we have not attempted to review the entire Drosophila memory field. Instead, we have tried to discuss particular findings that provide some level of intellectual synthesis across three levels of biological organization: behavior, neural circuitry and biochemical pathways. We have attempted to use this integrative approach to evaluate distinct mechanistic hypotheses, and to propose critical experiments that will advance this field.


Assuntos
Comportamento Animal/fisiologia , Drosophila/fisiologia , Regulação da Expressão Gênica , Memória/fisiologia , Modelos Neurológicos , Corpos Pedunculados/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Adenilil Ciclases/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Aprendizagem/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia
17.
Curr Biol ; 15(7): 603-15, 2005 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15823532

RESUMO

BACKGROUND: Molecular and electrophysiological properties of NMDARs suggest that they may be the Hebbian "coincidence detectors" hypothesized to underlie associative learning. Because of the nonspecificity of drugs that modulate NMDAR function or the relatively chronic genetic manipulations of various NMDAR subunits from mammalian studies, conclusive evidence for such an acute role for NMDARs in adult behavioral plasticity, however, is lacking. Moreover, a role for NMDARs in memory consolidation remains controversial. RESULTS: The Drosophila genome encodes two NMDAR homologs, dNR1 and dNR2. When coexpressed in Xenopus oocytes or Drosophila S2 cells, dNR1 and dNR2 form functional NMDARs with several of the distinguishing molecular properties observed for vertebrate NMDARs, including voltage/Mg(2+)-dependent activation by glutamate. Both proteins are weakly expressed throughout the entire brain but show preferential expression in several neurons surrounding the dendritic region of the mushroom bodies. Hypomorphic mutations of the essential dNR1 gene disrupt olfactory learning, and this learning defect is rescued with wild-type transgenes. Importantly, we show that Pavlovian learning is disrupted in adults within 15 hr after transient induction of a dNR1 antisense RNA transgene. Extended training is sufficient to overcome this initial learning defect, but long-term memory (LTM) specifically is abolished under these training conditions. CONCLUSIONS: Our study uses a combination of molecular-genetic tools to (1) generate genomic mutations of the dNR1 gene, (2) rescue the accompanying learning deficit with a dNR1+ transgene, and (3) rapidly and transiently knockdown dNR1+ expression in adults, thereby demonstrating an evolutionarily conserved role for the acute involvement of NMDARs in associative learning and memory.


Assuntos
Aprendizagem por Associação/fisiologia , Drosophila melanogaster/genética , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Olfato/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Clonagem Molecular , Drosophila melanogaster/fisiologia , Imuno-Histoquímica , Dados de Sequência Molecular , Corpos Pedunculados/metabolismo , Mutação/genética , Receptores de N-Metil-D-Aspartato/genética , Análise de Sequência de DNA , Olfato/fisiologia , Transgenes/genética , Xenopus
18.
Alcohol Clin Exp Res ; 32(5): 895-908, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18435628

RESUMO

BACKGROUND: It has become increasingly clear that molecular and neural mechanisms underlying learning and memory and drug addiction are largely shared. To confirm and extend these findings, we analyzed ethanol-responsive behaviors of a collection of Drosophila long-term memory mutants. METHODS: For each mutant, sensitivity to the acute uncoordinating effects of ethanol was quantified using the inebriometer. Additionally, 2 distinct forms of ethanol tolerance were measured: rapid tolerance, which develops in response to a single brief exposure to a high concentration of ethanol vapor; and chronic tolerance, which develops following a sustained low-level exposure. RESULTS: Several mutants were identified with altered sensitivity, rapid or chronic tolerance, while a number of mutants exhibited multiple defects. CONCLUSIONS: The corresponding genes in these mutants represent areas of potential overlap between learning and memory and behavioral responses to alcohol. These genes also define components shared between different ethanol behavioral responses.


Assuntos
Comportamento Animal/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Etanol/farmacologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Animais , Drosophila melanogaster/genética , Tolerância a Medicamentos/genética , Etanol/farmacocinética
19.
Curr Biol ; 13(21): 1900-4, 2003 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-14588247

RESUMO

Olfaction can elicit a rich perceptual experience. It is not known, however, whether olfactory information is decomposed into various components and processed in distinct perceptual centers as in other sensory systems, such as vision, where neural representations of different visual sensations are segregated in different cortical regions, despite the fact that multiple structures of the primary olfactory cortex receive projections from the olfactory bulb. Here, we use Drosophila as a model to investigate whether different olfactory information may be processed in separate brain structures. Organizations of the peripheral olfactory system are remarkably similar from mammals to insects. As in vertebrates, the olfactory pathway in Drosophila follows similar convergence and divergence, and multiple high-order structures in the Drosophila brain, including the mushroom body (MB) and lateral horn (LH) of the protocerebrum, receive olfactory input. We specifically blocked neurotransmission in the MB while leaving the LH unaffected and examined its effect on olfactory avoidance and attraction behaviors. We show that blocking MB activity disrupted responses to attractive, but not repulsive, odors, and this finding suggests that attractive and repulsive olfactory information may be separately processed in higher olfactory centers of the Drosophila brain.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Corpos Pedunculados/fisiologia , Odorantes , Olfato/fisiologia , Animais , Cruzamentos Genéticos , Drosophila , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Transgenes
20.
Curr Biol ; 14(4): 263-72, 2004 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-14972677

RESUMO

BACKGROUND: In both vertebrate and invertebrate animals, anesthetic agents cause retrograde amnesia for recently experienced events. In contrast, older memories are resistant to the same treatments. In Drosophila, anesthesia-resistant memory (ARM) and long-term memory (LTM) are genetically distinct forms of long-lasting memory that exist in parallel for at least a day after training. ARM is disrupted in radish mutants but is normal in transgenic flies overexpressing a CREB repressor transgene. In contrast, LTM is normal in radish mutants but is disrupted in CREB repressor transgenic flies. To date, nothing is known about the molecular, genetic, or cell biological pathways underlying ARM. RESULTS: Here, we report the molecular identification of radish as a phospholipase-A2, providing the first clue about signaling pathways underlying ARM in any animal. An enhancer-trap allele of radish (C133) reveals expression in a novel anatomical pathway. Transgenic expression of PLA2 under control of C133 restores normal levels of ARM to radish mutants, whereas transient disruption of neural activity in C133 neurons inhibits memory retention. Notably, expression of C133 is not in mushroom bodies, the primary anatomical focus of olfactory memory research in Drosophila. CONCLUSIONS: Identification of radish as a phospholipase-A2 and the neural expression pattern of an enhancer-trap allele significantly broaden our understanding of the biochemistry and anatomy underlying olfactory memory in Drosophila.


Assuntos
Anestesia , Temperatura Baixa , Drosophila melanogaster/fisiologia , Memória/fisiologia , Fosfolipases A/genética , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Northern Blotting , Western Blotting , Encéfalo/metabolismo , Cruzamentos Genéticos , Primers do DNA , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Genes Reporter/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosfolipases A2 , Plasmídeos/genética , Transdução de Sinais/fisiologia , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA