Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(9): 3863-3872, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733293

RESUMO

Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New therapeutic approaches and diagnostic tools for identification, stratification, and treatment of patients at higher risk of resistance and recurrence are therefore warranted. Here, we unveil a mechanism controlling the oncogenic activity of HER2: heteromerization with the cannabinoid receptor CB2R. We show that HER2 physically interacts with CB2R in breast cancer cells, and that the expression of these heteromers correlates with poor patient prognosis. The cannabinoid Δ9-tetrahydrocannabinol (THC) disrupts HER2-CB2R complexes by selectively binding to CB2R, which leads to (i) the inactivation of HER2 through disruption of HER2-HER2 homodimers, and (ii) the subsequent degradation of HER2 by the proteasome via the E3 ligase c-CBL. This in turn triggers antitumor responses in vitro and in vivo. Selective targeting of CB2R transmembrane region 5 mimicked THC effects. Together, these findings define HER2-CB2R heteromers as new potential targets for antitumor therapies and biomarkers with prognostic value in HER2-positive breast cancer.


Assuntos
Neoplasias da Mama/líquido cefalorraquidiano , Terapia de Alvo Molecular , Receptor CB2 de Canabinoide/genética , Receptor ErbB-2/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Dronabinol/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-cbl/genética , Receptor CB2 de Canabinoide/química , Receptor ErbB-2/química , Transdução de Sinais
2.
Microb Cell Fact ; 18(1): 97, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151435

RESUMO

BACKGROUND: Transglycosylation represents one of the most promising approaches for obtaining novel glycosides, and plant phenols and polyphenols are emerging as one of the best targets for creating new molecules with enhanced capacities. These compounds can be found in diet and exhibit a wide range of bioactivities, such as antioxidant, antihypertensive, antitumor, neuroprotective and anti-inflammatory, and the eco-friendly synthesis of glycosides from these molecules can be a suitable alternative for increasing their health benefits. RESULTS: Transglycosylation experiments were carried out using different GH3 ß-glucosidases from the fungus Talaromyces amestolkiae. After a first screening with a wide variety of potential transglycosylation acceptors, mono-glucosylated derivatives of hydroxytyrosol, vanillin alcohol, 4-hydroxybenzyl alcohol, and hydroquinone were detected. The reaction products were analyzed by thin-layer chromatography, high-pressure liquid chromatography, and mass spectrometry. Hydroxytyrosol and vanillyl alcohol were selected as the best options for transglycosylation optimization, with a final conversion yield of 13.8 and 19% of hydroxytyrosol and vanillin glucosides, respectively. NMR analysis confirmed the structures of these compounds. The evaluation of the biological effect of these glucosides using models of breast cancer cells, showed an enhancement in the anti-proliferative capacity of the vanillin derivative, and an improved safety profile of both glucosides. CONCLUSIONS: GH3 ß-glucosidases from T. amestolkiae expressed in P. pastoris were able to transglycosylate a wide variety of acceptors. Between them, phenolic molecules like hydroxytyrosol, vanillin alcohol, 4-hydroxybenzyl alcohol, and hydroquinone were the most suitable for its interesting biological properties. The glycosides of hydroxytyrosol and vanillin were tested, and they improved the biological activities of the original aglycons on breast cancer cells.


Assuntos
Neoplasias da Mama , Celulases/metabolismo , Glicosídeos/farmacologia , Talaromyces/enzimologia , Benzaldeídos/metabolismo , Álcoois Benzílicos/metabolismo , Celulases/química , Celulases/isolamento & purificação , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosilação , Humanos , Hidroquinonas/metabolismo , Células MCF-7 , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Especificidade por Substrato
3.
Cell Death Discov ; 10(1): 12, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184644

RESUMO

Mammary gland development occurs primarily in adulthood, undergoing extensive expansion during puberty followed by cycles of functional specialization and regression with every round of pregnancy/lactation/involution. This process is ultimately driven by the coordinated proliferation and differentiation of mammary epithelial cells. However, the endogenous molecular factors regulating these developmental dynamics are still poorly defined. Endocannabinoid signaling is known to determine cell fate-related events during the development of different organs in the central nervous system and the periphery. Here, we report that the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) plays a pivotal role in adult mammary gland development. Specifically, it is required for luminal lineage specification in the mammary gland, and it promotes hormone-driven secretory differentiation of mammary epithelial cells by controlling the endogenous levels of anandamide and the subsequent activation of cannabinoid CB1 receptors. Together, our findings shed light on the role of the endocannabinoid system in breast development and point to FAAH as a therapeutic target in milk-production deficits.

4.
Nat Commun ; 14(1): 3130, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253733

RESUMO

Clinical management of breast cancer (BC) metastasis remains an unmet need as it accounts for 90% of BC-associated mortality. Although the luminal subtype, which represents >70% of BC cases, is generally associated with a favorable outcome, it is susceptible to metastatic relapse as late as 15 years after treatment discontinuation. Seeking therapeutic approaches as well as screening tools to properly identify those patients with a higher risk of recurrence is therefore essential. Here, we report that the lipid-degrading enzyme fatty acid amide hydrolase (FAAH) is a predictor of long-term survival in patients with luminal BC, and that it blocks tumor progression and lung metastasis in cell and mouse models of BC. Together, our findings highlight the potential of FAAH as a biomarker with prognostic value in luminal BC and as a therapeutic target in metastatic disease.


Assuntos
Amidoidrolases , Biomarcadores Tumorais , Neoplasias Pulmonares , Animais , Camundongos , Amidoidrolases/genética , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/patologia
5.
Transl Oncol ; 13(12): 100858, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32891903

RESUMO

Metastases's spreading is the main cause of mortality for advanced stage cancer patients, including melanoma. The formation of metastases is favored by enhanced migratory and invasive capacities of tumor cells. Tumor suppressor gene NF1 is a negative regulator of RAS and its deregulation plays an important role in several aspects of melanoma transformation and progression. However, very little is described about the role of NF1 in cellular migration and invasion. In this study, our results show on the one hand, that the loss of NF1 expression delays migration of human melanoblasts via a RAC1-dependent mechanism. On the other hand, our data indicate that NF1 loss in melanoma cells is enhancing migration, intravasation and metastases formation in vivo. Moreover, not only this phenotype is associated with an upregulation of PREX1 but also patient-derived melanoma samples with low NF1 expression present increased levels of PREX1. In sum, our study brings new elements on the mechanism controlling cellular migration in the context of NF1 loss. These data are of prime interest to improve treatment strategies against all NF1-mutated tumors, including this subtype of melanoma.

6.
Biochem Pharmacol ; 157: 285-293, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29940172

RESUMO

Breast cancer is the second leading cause of death among women. Although early diagnosis and development of new treatments have improved their prognosis, many patients present innate or acquired resistance to current therapies. New therapeutic approaches are therefore warranted for the management of this disease. Extensive preclinical research has demonstrated that cannabinoids, the active ingredients of Cannabis sativa, trigger antitumor responses in different models of cancer. Most of these studies have been conducted with pure compounds, mainly Δ9-tetrahydrocannabinol (THC). The cannabis plant, however, produces hundreds of other compounds with their own therapeutic potential and the capability to induce synergic responses when combined, the so-called "entourage effect". Here, we compared the antitumor efficacy of pure THC with that of a botanical drug preparation (BDP). The BDP was more potent than pure THC in producing antitumor responses in cell culture and animal models of ER+/PR+, HER2+ and triple-negative breast cancer. This increased potency was not due to the presence of the 5 most abundant terpenes in the preparation. While pure THC acted by activating cannabinoid CB2 receptors and generating reactive oxygen species, the BDP modulated different targets and mechanisms of action. The combination of cannabinoids with estrogen receptor- or HER2-targeted therapies (tamoxifen and lapatinib, respectively) or with cisplatin, produced additive antiproliferative responses in cell cultures. Combinations of these treatments in vivo showed no interactions, either positive or negative. Together, our results suggest that standardized cannabis drug preparations, rather than pure cannabinoids, could be considered as part of the therapeutic armamentarium to manage breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cannabis , Dronabinol/uso terapêutico , Fitoterapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Nus , Preparações de Plantas/uso terapêutico , Receptor ErbB-2/análise , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA