RESUMO
Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12.
Assuntos
Domesticação , Genética Populacional , Cavalos , Animais , Arqueologia , Ásia , DNA Antigo , Europa (Continente) , Genoma , Pradaria , Cavalos/genética , FilogeniaRESUMO
The demographic history of East-Central Europe after the Neolithic period remains poorly explored, despite this region being on the confluence of various ecological zones and cultural entities. Here, the descendants of societies associated with steppe pastoralists form Early Bronze Age were followed by Middle Bronze Age populations displaying unique characteristics. Particularly, the predominance of collective burials, the scale of which, was previously seen only in the Neolithic. The extent to which this re-emergence of older traditions is a result of genetic shift or social changes in the MBA is a subject of debate. Here by analysing 91 newly generated genomes from Bronze Age individuals from present Poland and Ukraine, we discovered that Middle Bronze Age populations were formed by an additional admixture event involving a population with relatively high proportions of genetic component associated with European hunter-gatherers and that their social structure was based on, primarily patrilocal, multigenerational kin-groups.
Assuntos
Genoma Humano , Migração Humana , Humanos , História Antiga , Genoma Humano/genética , Europa (Continente) , Polônia , Mudança SocialRESUMO
DNA hybridization-capture techniques allow researchers to focus their sequencing efforts on preselected genomic regions. This feature is especially useful when analysing ancient DNA (aDNA) extracts, which are often dominated by exogenous environmental sources. Here, we assessed, for the first time, the performance of hyRAD as an inexpensive and design-free alternative to commercial capture protocols to obtain authentic aDNA data from osseous remains. HyRAD relies on double enzymatic restriction of fresh DNA extracts to produce RNA probes that cover only a fraction of the genome and can serve as baits for capturing homologous fragments from aDNA libraries. We found that this approach could retrieve sequence data from horse remains coming from a range of preservation environments, including beyond radiocarbon range, yielding up to 146.5-fold on-target enrichment for aDNA extracts showing extremely low endogenous content (<1%). Performance was, however, more limited for those samples already characterized by good DNA preservation (>20%-30%), while the fraction of endogenous reads mapping on- and off-target was relatively insensitive to the original endogenous DNA content. Procedures based on two instead of a single round of capture increased on-target coverage up to 3.6-fold. Additionally, we used methylation-sensitive restriction enzymes to produce probes targeting hypomethylated regions, which improved data quality by reducing post-mortem DNA damage and mapping within multicopy regions. Finally, we developed a fully automated hyRAD protocol utilizing inexpensive robotic platforms to facilitate capture processing. Overall, our work establishes hyRAD as a cost-effective strategy to recover a set of shared orthologous variants across multiple ancient samples.
Assuntos
DNA Antigo , RNA , Animais , Automação , Cavalos/genética , RNA/genética , Sondas RNA , Análise de Sequência de DNA/métodosRESUMO
From around 4,000 to 2,000 BC the forest-steppe north-western Pontic region was occupied by people who shared a nomadic lifestyle, pastoral economy and barrow burial rituals. It has been shown that these groups, especially those associated with the Yamnaya culture, played an important role in shaping the gene pool of Bronze Age Europeans, which extends into present-day patterns of genetic variation in Europe. Although the genetic impact of these migrations from the forest-steppe Pontic region into central Europe have previously been addressed in several studies, the contribution of mitochondrial lineages to the people associated with the Corded Ware culture in the eastern part of the North European Plain remains contentious. In this study, we present mitochondrial genomes from 23 Late Eneolithic and Bronze Age individuals, including representatives of the north-western Pontic region and the Corded Ware culture from the eastern part of the North European Plain. We identified, for the first time in ancient populations, the rare mitochondrial haplogroup X4 in two Bronze Age Catacomb culture-associated individuals. Genetic similarity analyses show close maternal genetic affinities between populations associated with both eastern and Baltic Corded Ware culture, and the Yamnaya horizon, in contrast to larger genetic differentiation between populations associated with western Corded Ware culture and the Yamnaya horizon. This indicates that females with steppe ancestry contributed to the formation of populations associated with the eastern Corded Ware culture while more local people, likely of Neolithic farmer ancestry, contributed to the formation of populations associated with western Corded Ware culture.