RESUMO
BACKGROUND: A low tissue oxygen level, < 1% O2, is a typical characteristic inside of solid tumors in head and neck cancer (HNSCC) affecting a wide array of cell populations, such as macrophages. However, the mechanisms of how hypoxia influences macrophages are not yet fully elucidated. Our research aimed to study the effect of soluble mediators produced by hypoxic cancer cells on macrophage polarization. Furthermore, we studied the effect of a hypoxic microenvironment on the expression of tumorigenic toll-like receptor 9 (TLR9) and the consecutive macrophage polarization. METHODS: Conditioned media (CMNOX or CMHOX) from cell lines UT-SCC-8, UT-SCC-74A, FaDu, MDA-MB-231 and HaCat cultured under normoxic (21% O2) and hypoxic (1% O2) conditions were used to polarize human monocyte-derived macrophages. Macrophage polarization was measured by flow cytometry and the production of cytokine mRNA using Taqman qPCR. To study the role of TLR9 in macrophage polarization, the lentiviral CRISPR/Cas9 method was used to establish a stable FaDuTLR9def clone. RESULTS: Our results demonstrate that the soluble mediators produced by the cancer cells under normoxia polarize macrophages towards a hybridized M1/M2a/M2c phenotype. Furthermore, the results suggest that hypoxia has a limited role in altering the array of cancer-produced soluble factors affecting macrophage polarization and cytokine production. Our data also indicates that increased expression of TLR9 due to hypoxia in malignant cells does not markedly influence the polarization of macrophages. TLR9 transcriptional response to hypoxia is dissimilar to a HIF1-α-regulated LDH-A. This may indicate a context-dependent expression of TLR9 under hypoxia. CONCLUSIONS: HNSCC cell lines affect both macrophage activity (polarization) and functionality (cytokines), but with exception to iNOS expression, the effects appear independent of hypoxia and TLR9.
Assuntos
Neoplasias de Cabeça e Pescoço/imunologia , Hipóxia/fisiopatologia , Imunomodulação , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Receptor Toll-Like 9/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Células Tumorais Cultivadas , Microambiente Tumoral/imunologiaRESUMO
Toll-like receptor 9 (TLR9) is a cellular DNA-receptor widely expressed in cancers. We previously showed that synthetic and self-derived DNA fragments induce TLR9-mediated breast cancer cell invasion in vitro. We investigated here the invasive effects of two nuclease-resistant DNA fragments, a 9-mer hairpin, and a G-quadruplex DNA based on the human telomere sequence, both having native phosphodiester backbone. Cellular uptake of DNAs was investigated with immunofluorescence, invasion was studied with Matrigel-assays, and mRNA and protein expression were studied with qPCR and Western blotting and protease activity with zymograms. TLR9 expression was suppressed through siRNA. Although both DNAs induced TLR9-mediated changes in pro-invasive mRNA expression, only the telomeric G-quadruplex DNA significantly increased cellular invasion. This was inhibited with GM6001 and aprotinin, suggesting MMP- and serine protease mediation. Furthermore, complexing with LL-37, a cathelicidin-peptide present in breast cancers, increased 9-mer hairpin and G-quadruplex DNA uptake into the cancer cells. However, DNA/LL-37 complexes decreased invasion, as compared with DNA-treatment alone. Invasion studies were conducted also with DNA fragments isolated from neoadjuvant chemotherapy-treated breast tumors. Also such DNA induced breast cancer cell invasion in vitro. As with the synthetic DNAs, this invasive effect was reduced by complexing the neoadjuvant tumor-derived DNAs with LL-37. We conclude that 9-mer hairpin and G-quadruplex DNA fragments are nuclease-resistant DNA structures that can act as invasion-inducing TLR9 ligands. Their cellular uptake and the invasive effects are regulated via LL-37. Although such structures may be present in chemotherapy-treated tumors, the clinical significance of this finding requires further studying.
Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Invasividade Neoplásica/genética , Telômero/genética , Receptor Toll-Like 9/genética , Linhagem Celular Tumoral , Fragmentação do DNA , DNA de Neoplasias/genética , Feminino , Quadruplex G , Humanos , Ligantes , Invasividade Neoplásica/patologia , RNA Mensageiro/genética , CatelicidinasRESUMO
Advanced breast cancer has a high incidence of bone metastases. In bone, breast cancer cells induce osteolytic or mixed bone lesions by inducing an imbalance in bone formation and resorption. Activated fibroblast growth factor receptors (FGFRs) are important in regulation of tumor growth and bone remodeling. In this study we used FGFR1 and FGFR2 gene amplifications containing human MFM223 breast cancer cells in an experimental xenograft model of breast cancer bone growth using intratibial inoculation technique. This model mimics bone metastases in breast cancer patients. The effects of an FGFR inhibitor, dovitinib dilactic acid (TKI258) on tumor growth and tumor-induced bone changes were evaluated. Cancer-induced bone lesions were smaller in dovitinib-treated mice as evaluated by X-ray imaging. Peripheral quantitative computed tomography imaging showed higher total and cortical bone mineral content and cortical bone mineral density in dovitinib-treated mice, suggesting better preserved bone mass. CatWalk gait analysis indicated that dovitinib-treated mice experienced less cancer-induced bone pain in the tumor-bearing leg. A trend towards decreased tumor growth and metabolic activity was observed in dovitinib-treated mice quantified by positron emission tomography imaging with 2-[18F]fluoro-2-deoxy-D-glucose at the endpoint. We conclude that dovitinib treatment decreased tumor burden, cancer-induced changes in bone, and bone pain. The results suggest that targeting FGFRs could be beneficial in breast cancer patients with bone metastases.
RESUMO
BACKGROUND: Metastatic prostate cancer is associated with a high morbidity and mortality but the spreading mechanisms are still poorly understood. The aminobisphosphonate alendronate, used to reduce bone loss, has also been shown to inhibit the invasion and migration of prostate cancer cells in vitro. We used a modified orthotopic PC-3 nude mouse tumor model of human prostate cancer to study whether alendronate affects prostate tumor growth and metastasis. METHODS: PC-3 cells (5 x 10(5)) were implanted in the prostates of nude mice and the mice were treated with alendronate (0.5 mg/kg/day in PBS, s.c.) or vehicle for 4 weeks. After sacrifice, the sizes of tumor-bearing prostates were measured and the tumors and prostate-draining regional iliac and sacral lymph nodes were excised for studies on markers of proliferation, apoptosis, angiogenesis and lymphangiogenesis, using histomorphometry and immunohistochemistry. RESULTS: Tumor occurrence in the prostate was 73% in the alendronate-treated group and 81% in the control group. Mean tumor size (218 mm3, range: 96-485 mm3, n = 11) in the alendronate-treated mice was 41% of that in the control mice (513 mm3, range: 209-1350 mm3, n = 13) (p < 0.05). In the iliac and sacral lymph nodes of alendronate-treated mice, the proportion of metastatic area was only about 10% of that in control mice (p < 0.001). Immunohistochemical staining of tumor sections showed that alendronate treatment caused a marked decrease in the number of CD34-positive endothelial cells in tumors (p < 0.001) and an increase in that of ISEL positive apoptotic cells in tumors as well as in lymph node metastases (p < 0.05) compared with those in the vehicle-treated mice. The density of m-LYVE-1-stained lymphatic capillaries was not changed. CONCLUSION: Our results demonstrate that alendronate treatment opposes growth of orthotopic PC-3 tumors and decreases tumor metastasis to prostate-draining lymph nodes. This effect could be at least partly explained by decreased angiogenesis and increased apoptosis. The results suggest that bisphosphonates have anti-tumoral and anti-invasive effects on primary prostate cancer.
Assuntos
Adenocarcinoma/secundário , Alendronato/uso terapêutico , Antineoplásicos/uso terapêutico , Metástase Linfática/prevenção & controle , Neoplasias da Próstata/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/prevenção & controle , Alendronato/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/análise , Divisão Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neovascularização Patológica/tratamento farmacológico , Neoplasias da Próstata/patologia , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Organismos Livres de Patógenos Específicos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Bisphosphonates are used for prevention of osteoporosis and metastatic bone diseases. Anti-invasive effects on various cancer cells have also been reported, but the mechanisms involved are not well-understood. We investigated the effects of the nitrogen-containing bisphosphonate alendronate (ALN) on the regulation of actin cytoskeleton in PC-3 cells. We analyzed the ALN effect on the organization and the dynamics of actin, and on the cytoskeleton-related regulatory proteins cofilin, p21-associated kinase 2 (PAK2), paxillin and focal adhesion kinase. Immunostainings of cofilin in ALN-treated PC-3 cells and xenografts were performed, and the role of cofilin in ALN-regulated F-actin organization and migration/invasion in PC-3 cells was analyzed using cofilin knockdown and transfection. We demonstrate that disrupted F-actin organization and decreased cell motility in ALN-treated PC-3 cells were associated with decreased levels of total and phosphorylated cofilin. PAK2 levels were also lowered but adhesion-related proteins were not altered. The knockdown of cofilin similarly impaired F-actin organization and decreased invasion of PC-3 cells, whereas in the cells transfected with a cofilin expressing vector, ALN treatment did not decrease cellular cofilin levels and migration as in mock transfected cells. ALN also reduced immunohistochemical staining of cofilin in PC-3 xenografts. Our results suggest that reduction of cofilin has an important role in ALN-induced disruption of the actin cytoskeleton and inhibition of the PC-3 cell motility and invasion. These data also support the idea that the nitrogen-containing bisphosphonates could be efficacious in inhibition of prostate cancer invasion and metastasis, if delivered in a pharmacological formulation accessible to the tumors.
RESUMO
INTRODUCTION: Toll-like receptor 9 (TLR9) is an innate immune system DNA-receptor that regulates tumor invasion and immunity in vitro. Low tumor TLR9 expression has been associated with poor survival in Caucasian patients with triple negative breast cancer (TNBC). African American (AA) patients with TNBC have worse prognosis than Caucasians but whether this is due to differences in tumor biology remains controversial. We studied the prognostic significance of tumor Toll like receptor-9 (TLR9) protein expression among African American (AA) triple negative breast cancer (TNBC) patients. Germline TLR9 variants in European Americans (EAs) and AAs were investigated, to determine their contribution to AA breast cancer risk. METHODS: TLR9 expression was studied with immunohistochemistry in archival tumors. Exome Variant Server and The Cancer Genome Atlas were used to determine the genetic variation in the general EA and AA populations, and AA breast cancer cases. Minor allele frequencies (MAFs) were compared between EAs (n = 4300), AAs (n = 2203), and/or AA breast cancer cases (n = 131). RESULTS: Thirty-two TLR9 variants had a statistically significant MAF difference between general EAs and AAs. Twenty-one of them affect a CpG site. Rs352140, a variant previously associated with protection from breast cancer, is more common in EAs than AAs (p = 2.20E-16). EAs had more synonymous alleles, while AAs had more rare coding alleles. Similar analyses comparing AA breast cancer cases with AA controls did not reveal any variant class differences; however, three previously unreported TLR9 variants were associated with late onset breast cancer. Although not statistically significant, rs352140 was observed less frequently in AA cases compared to controls. Tumor TLR9 protein expression was not associated with prognosis. CONCLUSIONS: Tumor TLR9 expression is not associated with prognosis in AA TNBC. Significant differences were detected in TLR9 variant MAFs between EAs and AAs. They may affect TLR9 expression and function. Rs352140, which may protect from breast cancer, is 1.6 X more common among EAs. These findings call for a detailed analysis of the contribution of TLR9 to breast cancer pathophysiology and health disparities.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor Toll-Like 9/genética , Adulto , Negro ou Afro-Americano/genética , Idoso , Biomarcadores Tumorais/genética , Feminino , Frequência do Gene/genética , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , População Branca/genéticaRESUMO
Bisphosphonates are standard treatments for bone metastases. When given in the adjuvant setting, they reduce breast cancer mortality and recurrence in bone but only among post-menopausal patients. Optimal drug use would require biomarker-based patient selection. Such biomarkers are not yet in clinical use. Based on the similarities in inflammatory responses to bisphosphonates and Toll-like receptor (TLR) agonists, we hypothesized that TLR9 expression may affect bisphosphonate responses in cells. We compared bisphosphonate effects in breast cancer cell lines with low or high TLR9 expression. We discovered that cells with decreased TLR9 expression are significantly more sensitive to the growth-inhibitory effects of bisphosphonates in vitro and in vivo. Furthermore, cancer growth-promoting effects seen with some bisphosphonates in some control shRNA cells were not detected in TLR9 shRNA cells. These differences were not associated with inhibition of Rap1A prenylation or p38 phosphorylation, which are known markers for bisphosphonate activity. However, TLR9 shRNA cells exhibited increased sensitivity to ApppI, a metabolite that accumulates in cells after bisphosphonate treatment. We conclude that decreased TLR9-expression sensitizes breast cancer cells to the growth inhibitory effects of bisphosphonates. Our results suggest that TLR9 should be studied as a potential biomarker for adjuvant bisphosphonate sensitivity among breast cancer patients.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Difosfonatos/uso terapêutico , Receptor Toll-Like 9/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Difosfonatos/farmacologia , Feminino , Humanos , Camundongos , RNA Interferente Pequeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismoRESUMO
Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1-4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1-3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level.