Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 131(12): 2049-2057, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38606563

RESUMO

The ability to provide adequate nutrition is considered a key factor in evaluating the sustainability of foods and diets. Nutrient indices are used as functional units (FU) in life cycle assessment of foods to include nutritional performance in the environmental assessment of a product. Several general and food-group-specific nutrient indices exist but many lack validation, particularly when used as FU. In addition, the nutrient selection strategies and reference units for nutrient intake can vary considerably among studies. To validate intake-based product-group-specific nutrient indices previously developed for protein (NR-FIprot) and carbohydrate (NR-FIcarb) foods and for fruits and vegetables (NR-FIveg), we applied principal component analysis to investigate correlations between nutrients in foods and dishes representing a typical Finnish diet. The reference amounts for meal components were based on a plate model that reflected Finnish dietary recommendations. The portion sizes for the different food groups were anchored at 100 g, 135 g and 350 g for proteins, carbohydrates and fruits/vegetables, respectively. Statistical modelling largely validated the NR-FI indices, highlighting protein foods as sources of niacin, vitamin B12 and Se, carbohydrate foods as sources of Mg, Fe and phosphorous, and fruits/vegetables as sources of potassium, vitamin K, vitamin C, fibre and thiamine. However, in contrast to the intake-based approach applied in NR-FIprot, the dietary recommendation-based validation process suggested that fruits and vegetables should be favoured as sources of riboflavin and vitamin B6.


Assuntos
Dieta , Frutas , Nutrientes , Valor Nutritivo , Verduras , Finlândia , Humanos , Nutrientes/análise , Frutas/química , Carboidratos da Dieta/análise , Proteínas Alimentares/análise , Análise de Componente Principal , Alimentos
2.
Eur J Nutr ; 63(5): 1663-1678, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38584247

RESUMO

PURPOSE: Proposed sustainable diets often deviate dramatically from currently consumed diets, excluding or drastically reducing entire food groups. Moreover, their environmental sustainability tends to be measured only in terms of greenhouse gases emissions. The aim of this study was to overcome these limitations and identify a cluster of already adopted, relatively healthy diets with substantially lower environmental impacts than the average diet. We also aimed to estimate the reduction in multiple environmental impacts that could be achieved by shifting to this diet cluster and highlight possible tradeoffs among environmental impacts. METHODS: The diet clusters were identified by applying energy-adjusted multiple factor analysis and hierarchical clustering to the dietary data of the National FinHealth 2017 Study (n = 5125) harmonized with life cycle assessment data on food products from Agribalyse 3.0 and Agri-Footprint using nutrient intakes and global warming potential, land use, and eutrophication of marine and freshwater systems as the active variables. RESULTS: We identified five diet clusters, none of which had the highest overall diet quality and lowest impact for all four environmental indicators. One cluster, including twenty percent of the individuals in the sample was identified as a "best compromise" diet with the highest diet quality and the second lowest environmental impacts of all clusters, except for freshwater eutrophication. The cluster did not exclude any food groups, but included more fruits, vegetables, and fish and less of all other animal-source foods than average. Shifting to this cluster diet could raise diet quality while achieving significant reductions in most but not all environmental impacts. CONCLUSION: There are tradeoffs among the environmental impacts of diets. Thus, future dietary analyses should consider multiple sustainability indicators simultaneously. Cluster analysis is a useful tool to help design tailored, socio-culturally acceptable dietary transition paths towards high diet quality and lower environmental impact.


Assuntos
Dieta , Meio Ambiente , Humanos , Feminino , Dieta/estatística & dados numéricos , Dieta/métodos , Dieta/normas , Masculino , Pessoa de Meia-Idade , Adulto , Dieta Saudável/estatística & dados numéricos , Dieta Saudável/métodos , Análise por Conglomerados , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA