Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Mater ; 20(7): 984-990, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33686276

RESUMO

All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi0.33Mn0.33Co0.33O2 cathodes and both Li4Ti5O12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.

2.
Nat Mater ; 18(12): 1343-1349, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31501555

RESUMO

Metal fluoride conversion cathodes offer a pathway towards developing lower-cost Li-ion batteries. Unfortunately, such cathodes suffer from extremely poor performance at elevated temperatures, which may prevent their use in large-scale energy storage applications. Here we report that replacing commonly used organic electrolytes with solid polymer electrolytes may overcome this hurdle. We demonstrate long-cycle stability for over 300 cycles at 50 °C attained in high-capacity (>450 mAh g-1) FeF2 cathodes. The absence of liquid solvents reduced electrolyte decomposition, while mechanical properties of the solid polymer electrolyte enhanced cathode structural stability. Our findings suggest that the formation of an elastic, thin and homogeneous cathode electrolyte interphase layer on active particles is a key for stable performance. The successful operation of metal fluorides at elevated temperatures opens a new avenue for their practical applications and future successful commercialization.

3.
Angew Chem Int Ed Engl ; 59(1): 403-408, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31604002

RESUMO

Technologically important composites with enhanced thermal and mechanical properties rely on the reinforcement by the high specific strength ceramic nanofibers or nanowires (NWs) with high aspect ratios. However, conventional synthesis routes to produce such ceramic NWs have prohibitively high cost. Now, direct transformation of bulk Mg-Li alloys into Mg alkoxide NWs is demonstrated without the use of catalysts, templates, expensive or toxic chemicals, or any external stimuli. This mechanism proceeds through the minimization of strain energy at the boundary of phase transformation front leading to the formation of ultra-long NWs with tunable dimensions. Such alkoxide NWs can be easily converted in air into ceramic MgO NWs with similar dimensions. The impact of the alloy grain size and Li content, synthesis temperature, inductive and steric effects of alkoxide groups on the diameter, length, composition, ductility, and oxidation of the produced NWs is discussed.

4.
Nature ; 559(7715): 467-470, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046087
5.
J Am Chem Soc ; 140(39): 12493-12500, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30189731

RESUMO

Fabrication and applications of lightweight, high load-bearing, thermally stable composite materials would benefit greatly from leveraging the high mechanical strength of ceramic nanowires (NWs) over conventional particles or micrometer-scale fibers. However, conventional synthesis routes to produce NWs are rather expensive. Recently we discovered a novel method to directly convert certain bulk bimetallic alloys to metal-organic NWs at ambient temperature and pressure. This method was demonstrated by a facile transformation of polycrystalline aluminum-lithium (AlLi) alloy particles to aluminum alkoxide NWs, which can be further transformed to mechanically robust aluminum oxide (Al2O3) NWs. However, the transformation mechanisms have not been clearly understood. Here, we conducted advanced materials characterization (via electron microscopy and nuclear magnetic resonance spectroscopies) and chemo-mechanical modeling to elucidate key physical and chemical mechanisms responsible for NWs formation. We further demonstrated that the content of Li metal in the AlLi alloy could be reduced to about 4 wt % without compromising the success of the NWs synthesis. This new mechanistic understanding may open new avenues for large-scale, low-cost manufacturing of NWs and nanofibers for a broad range of composites and flexible ceramic membranes.

6.
Small ; 14(43): e1703425, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29498215

RESUMO

Conventional slurry casted electrodes cannot stand high loads or be repeatedly flexed or bent without being fractured, which inhibits their use in flexible batteries. Carbon nanotube (CNT) fabric exhibits a paramount mechanical stability and, due to its porosity, can additionally accommodate an active material within its structure. While solution-based protocols cannot achieve conformal coatings of active materials, chemical vapor deposition (CVD) gives a unique opportunity to control and vary the thickness and homogeneity of the coating. Herein, a conformal CVD coating of amorphous iron (III) phosphate (a-FePO4 , FP) on flexible CNT fabric and its ability to reversibly accommodate large radius Na ions is reported. The freestanding binder-free CNT@FP electrodes exhibit high-rate capabilities and exceptional cycle stabilities with 98% of retention of initial capacity after 100 cycles. Such electrodes additionally demonstrate high mechanical stability under high loads, remarkable bending characteristics, and modulus of toughness (12 MJ m-3 ) exceeding that of Al. The presented concept of flexible CNT@FePO4 electrodes with high load-bearing characteristics opens new perspectives toward the formation of light-weight, flexible, multifunctional Na-ion battery electrodes based on abundant materials.

7.
J Org Chem ; 80(3): 1387-94, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25549661

RESUMO

Several possible reaction pathways are analyzed for the recently studied experimental reaction of diaminocarbenes with aroylimines, where the carbene acted as an oxygen-abstracting agent. A number of structures corresponding to local minima and transition states are located by geometry optimization. In contrast to the more recent interpretation of the mechanism of this process, the reaction does not proceed via the direct formation of the corresponding carbonyl ylide resulted from the electrophilic addition of diaminocarbene to the carbonyl oxygen atom. Two other, more favorable pathways were predicted instead: the nucleophilic attack of the carbene lone pair on the imino nitrogen (pathway "a") or on the carbon atom in the C═N moiety of aroylimine (pathway "b"), in agreement with predictions of the frontier molecular orbital (FMO) theory. Both intermediate adducts undergo a subsequent decomposition onto nitrile ylide and urea. Which of the two pathways becomes preferential depends on the nature of the substituents: pathway "a" is more favored for the experimentally studied species, whereas pathway "b" is thermodynamically preferable for the small-sized model structures.

8.
ACS Appl Mater Interfaces ; 15(27): 32678-32686, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364171

RESUMO

Current lithium-ion battery separators made from polyolefins such as polypropylene and polyethylene generally suffer from low porosity, low wettability, and slow ionic conductivity and tend to perform poorly against heat-triggering reactions that may cause potentially catastrophic issues, such as fire. To overcome these limitations, here we report that a porous composite membrane consisting of poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers functionalized with nanodiamonds (NDs) can realize a thermally resistant, mechanically robust, and ionically conductive separator. We critically reveal the role of NDs in the polymer matrix of the membrane to improve the thermal, mechanical, crystalline, and electrochemical properties of the composites. Taking advantages of these characteristics, the ND-functionalized nanofiber separator enables high-capacity and stable cycling of lithium cells with LiNi0.8Mn0.1Co0.1O2 (NMC811) as the cathode, much superior to those using conventional polyolefin separators in otherwise identical cells.

9.
ACS Appl Mater Interfaces ; 14(11): 13820-13827, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35286060

RESUMO

We report on a new synthesis pathway for Mg n-propoxide nanowires (NWs) from Mg ethoxide nanoparticles using a simple alkoxy ligand exchange reaction followed by condensation polymerization in n-propanol. In order to uncover the morphology-structure correlation in the metal alkoxide family, we employed a powerful range of state-of-the-art characterization techniques. The morphology transformation from nanoparticles to nanowires was demonstrated by time-lapse SEM micrographs. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (such as 1H NMR and solid-state 13C cross-polarization (CP)-MAS NMR) illustrated the replacement of ethyl by n-propyl and metal alkoxide condensation polymerization. We identified chemical formulas of the products also using NMR spectroscopy. The crystal structure simulation of Mg ethoxide particles and Mg n-propoxide NWs provided insights on how the ligand exchange and the associated increase in the fraction of OH groups greatly enhanced Mg alkoxide bonding and enabled a higher degree of coordination polymerization to facilitate the formation and growth of the Mg n-propoxide NWs. The discovered synthesis method could be extended for the fabrication of other metal alkoxide (nano) structures with various morphologies.

10.
J Mater Chem B ; 4(15): 2598-2605, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263283

RESUMO

Particle-based photodynamic therapy (PPDT) holds great promise in theranostic applications. Herein, we demonstrate that PPDT based on gold nanorods coated with an indocyanine green (ICG)-loaded silica shell allows for the inactivation of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 (E. coli LF82) under pulsed laser light irradiation at 810 nm. Fine-tuning of the plasmonic structures together with maximizing the photosensitizer loading onto the nanostructures allowed optimizing the singlet oxygen generation capability and the PPDT efficiency. Using a nanoparticle concentration low enough to suppress photothermal heating effects, 6 log10 reduction in E. coli LF82 viability could be achieved using gold nanostructures displaying a plasmonic band at 900 nm. An additional modality of nanoparticle-based photoinactivation of E. coli is partly observed, with 3 log10 reduction of bacterial viability using Au NRs@SiO2 without ICG, due to the two-photon induced formation of reactive oxygen species. Interaction of the particles with the bacterial surface, responsible for the disruption of the bacterial integrity, together with the generation of moderate quantities of singlet oxygen could account for this behavior.

11.
J Mater Chem B ; 3(21): 4301-4324, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262773

RESUMO

Recent developments in materials science and nanotechnology have propelled the development of a plethora of materials with unique chemical and physical properties for biomedical applications. Graphitic nanomaterials such as carbon nanotubes, fullerenes and, more recently, graphene oxide (GO) and reduced graphene oxide (rGO) have received a great deal of interest in this domain. Besides the exceptional physico-chemical features of these materials, another advantage is that they can be easily produced in good quantities. Moreover, the presence of abundant functional groups on their surface and good biocompatibility make them highly suitable for biomedical applications. Many research groups have utilized GO and rGO nanocargos to effectively deliver insoluble drugs, nucleic acids and other molecules into cells for bioimaging and therapeutic purposes. Gold nanostructures (Au NSs), on the other hand, have also attracted great attention owing to their applications in biomedical fields, organic catalysis, etc. Loading of GO and rGO sheets with Au NSs generates a new class of functional materials with improved properties and thus provides new opportunities in the use of such hybrid materials for catalytic biosensing and biomedical applications. This review article is aimed at providing an insight into the important features of gold-graphene nanocomposites, the current research activities related to the different synthetic routes to produce these nanocomposites, and their potential applications in sensing and biomedical therapy, notably photothermal therapy (PTT).

12.
J Mater Chem B ; 3(42): 8366-8374, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262889

RESUMO

Gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) mediated hyperthermia are the two most widely explored systems used for the photothermal ablation of cancer cells. We show that the photothermal conversion and efficiency of these nanomaterials can be improved not only by combining them into one material, but also by forming bimetallic AuPd embedded on rGO. The AuPd NPs-rGO nanocomposites were prepared by a simple one-step chemical reduction technique using the individual metallic salts, graphene oxide (GO) and ascorbic acid as a green reducing agent. The AuPd NPs-rGO nanocomposites were covalently functionalized with poly(ethylene glycol) (PEG) chains and characterized by high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and UV/Vis spectrophotometry. Covalent attachment of PEG units to the AuPd NPs-rGO nanocomposites greatly improved the solubility and stability of the nanocomposites in biological media and ensured its biocompatibility towards cancer cells such as HeLa cells. The near-infrared photothermal properties of AuPd NPs-rGO-PEG nanocomposites were evaluated using a continuous laser at 800 nm with power densities between 0.5 and 2 W cm-2. The nanocomposite was successfully used for the in vitro photothermal ablation of HeLa cells. At 1 W cm-2, the total killing of HeLa cells was achieved through irradiation of AuPd NPs-rGO-PEG nanocomposites incubated cells for 10 min at a particle concentration of 20 µg mL-1. Such high efficiency was principally assigned to the synergetic effects of rGO and AuPd NPs.

13.
Chem Commun (Camb) ; 51(91): 16365-8, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26403761

RESUMO

The potential of gold nanorods post-coated with a 20 nm silica shell loaded with verteporfin (Au NRs@SiO2-VP) as efficient near-infrared nanostructures for photodynamic therapy under continuous wave and pulsed-mode excitation to eradicate a virulent strain of E. coli associated with urinary tract infection is described.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Ouro/farmacologia , Nanotubos/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Dióxido de Silício/farmacologia , Antibacterianos/química , Ouro/química , Oxigênio/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Porfirinas/química , Dióxido de Silício/química , Verteporfina
14.
J Mater Chem B ; 3(3): 375-386, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262041

RESUMO

The development of non-antibiotic based treatments against bacterial infections by Gram-negative uropathogenic E. coli is a complex task. New strategies to treat such infections are thus urgently needed. This report illustrates the development of pegylated reduced graphene oxide nanoparticles (rGO-PEG) and gold nanorods (Au NRs) coated with rGO-PEG (rGO-PEG-Au NRs) for the selective killing of uropathogenic E. coli UTI89. We took advantage of the excellent light absorption properties of rGO-PEG and Au NR particles in the near-infrared (NIR) region to photothermally kill Gram-negative pathogens up to 99% in 10 min by illumination of solutions containing the bacteria. The rGO-PEG-Au NRs demonstrated better photothermal efficiency towards E. coli than rGO-PEG. Targeted killing of E. coli UTI89 could be achieved with rGO-PEG-Au NRs functionalized with multimeric heptyl α-d-mannoside probes. This currently offers a unique biocompatible method for the ablation of pathogens with the opening of probably a new possibility for clinical treatments of patients with urinary infections.

15.
Nanoscale ; 5(22): 10729-52, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24091568

RESUMO

The synthesis of superparamagnetic nanostructures, especially iron-oxide based nanoparticles (IONPs), with appropriate surface functional groups has been intensively researched for many high-technological applications, including high density data storage, biosensing and biomedicine. In medicine, IONPs are nowadays widely used as contrast agents for magnetic resonance imaging (MRI), in hyperthermia therapy, but are also exploited for drug and gene delivery, detoxification of biological fluids or immunoassays, as they are relatively non-toxic. The use of magnetic particles in vivo requires IONPs to have high magnetization values, diameters below 100 nm with overall narrow size distribution and long time stability in biological fluids. Due to the high surface energies of IONPs agglomeration over time is often encountered. It is thus of prime importance to modify their surface to prevent aggregation and to limit non-specific adsorption of biomolecules onto their surface. Such chemical modifications result in IONPs being well-dispersed and biocompatible, and allow for targeted delivery and specific interactions. The chemical nature of IONPs thus determines not only the overall size of the colloid, but also plays a significant role for in vivo and in vitro applications. This review discusses the different concepts currently used for the surface functionalization and coating of iron oxide nanoparticles. The diverse strategies for the covalent linking of drugs, proteins, enzymes, antibodies, and nucleotides will be discussed and the chemically relevant steps will be explained in detail.

16.
ACS Appl Mater Interfaces ; 5(23): 12488-98, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24180242

RESUMO

Phenylboronic-acid-modified nanoparticles (NPs) are attracting considerable attention for biological and biomedical applications. We describe here a convenient and general protocol for attaching multiple copies of para-substituted phenylboronic acid moieties onto either iron-oxide-, silica- or diamond-derived NPs. The boronic acid functionalized NPs are all fabricated by first modifying the surface of each particle type with 4-azidobenzoic ester functions. These azide-terminated nanostructures were then reacted with 4-[1-oxo-4-pentyn-1-yl) amino]phenylboronic acid units via a Cu(I) catalyzed Huisgen cycloaddition to furnish, conveniently, the corresponding boronic-acid modified NPs (or "borono-lectins") targeted in this work. The potential of these novel "borono-lectins" as antiviral inhibitors was investigated against the Hepatitis C virus (HCV) exploiting a bioassay that measures the potential of drugs to interfere with the ability of cell-culture-derived JFH1 virus particles to infect healthy hepatocytes. As far as we are aware, this is the first report that describes NP-derived viral entry inhibitors and thus serves as a "proof-of-concept" study. The novel viral entry activity demonstrated, and the fact that the described boronic-acid-functionalized NPs all display much reduced cellular toxicities compared with alternate NPs, sets the stage for their further investigation. The data supports that NP-derived borono-lectins should be pursued as a potential therapeutic strategy for blocking viral entry of HCV.


Assuntos
Antivirais/farmacologia , Ácidos Borônicos/química , Nanopartículas , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Nanoscale ; 5(7): 2692-702, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23420060

RESUMO

The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click ¼ chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.


Assuntos
Dopamina/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Alcinos/síntese química , Alcinos/química , Alcinos/farmacologia , Azidas/síntese química , Azidas/química , Azidas/farmacologia , Catálise , Ligação de Hidrogênio , Magnetismo/instrumentação , Magnetismo/métodos , Maleimidas/química , Maleimidas/farmacologia , Tamanho da Partícula , Propriedades de Superfície
18.
Chem Commun (Camb) ; 48(94): 11519-21, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23090101

RESUMO

Addition of anions derived from dialkyl methylphosphonates to (Ss)-N-tert-butanesulfinyl (3,3,3)-trifluoroacetaldimine afforded (Ss,R) addition adducts in moderate to good yield (53-75%) with excellent diastereoselectivity (94-95% de). After selective removal of the N-sulfinyl group, dipeptides containing enantiomerically pure diethyl 2-amino-3,3,3-trifluoropropylphosphonate were synthesized to investigate the influence of the trifluoromethyl substituent on N-terminal coupling.


Assuntos
Dipeptídeos/química , Fosforamidas/química , Fosforamidas/síntese química , Técnicas de Química Sintética , Metilação , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA