Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 89(8): 4444-4451, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28318230

RESUMO

The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for qualitative label-free detection of carbohydrate-protein interactions on arrays of simple synthetic glycans, more complex natural glycosaminoglycans (GAG), and lectins/carbohydrate binding proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The platform can unequivocally identify proteins that are captured from either purified or complex sample mixtures, including biofluids. Identification of proteins bound to the functionalized array is achieved by analyzing either the intact protein mass or, after on-chip proteolytic digestion, the peptide mass fingerprint and/or tandem mass spectrometry of selected peptides, which can yield highly diagnostic sequence information. The platform described here should be a valuable addition to the limited analytical toolbox that is currently available for glycomics.


Assuntos
Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glicoproteínas/química , Glicosaminoglicanos/química , Humanos , Lectinas/química , Lectinas/metabolismo , Análise em Microsséries , Leite Humano/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Ligação Proteica , Tripsina/metabolismo
2.
Chembiochem ; 10(7): 1218-26, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19360804

RESUMO

This way up. Dual polarisation interferometry was used to design and characterise a surface on which the orientation and density of immobilised carbohydrates was suitable for studying their interactions with proteins. Lactoferrin was shown to adopt two orientations: "end-on" or "side-on", while for FGF-2 a single monolayer of protein was observed. The new surface can be used to elucidate the binding of proteins to carbohydrates and the geometry of the complexes, a frequently controversial area. Surface-based tools, such as microarrays and optical biosensors, are being increasingly applied to the analysis of carbohydrate-protein interactions. A key to these developments is the presentation of the carbohydrate to the protein target. Dual polarisation interferometry (DPI) is a surface-based technique that permits the real-time measurement of the changes in thickness, refractive index and mass of adsorbates 100 nm thick or less on the surface of a functionalised waveguide. DPI has been used to design and characterise a surface on which the orientation and density of the immobilised carbohydrates is suitable for studying their interactions with proteins and where nonspecific binding is reduced to less than 5 % of total binding. A thiol-functionalised surface was derivatised with a heterobifunctional crosslinker to yield a hydrazide surface. This was treated with oligosaccharides, derived from keratan sulfate (KS) chondroitin sulfate (CS) and heparin, that possess a reducing end. To block the unreacted hydrazide groups, the surface was treated with an aldehyde-functionalised PEG. The heparin DP-10 surfaces were then used to determine the performance of the immobilised DP-10 with respect to binding of two well-characterised proteins, lactoferrin (Lf) and fibroblast growth factor-2. The results show that Lf could adopt two different orientations, at high protein loadings the protein layer thickness corresponded to an "end-on" orientation of Lf, whilst rinsing with buffer saw the Lf molecules adopt a "side-on" configuration. In the case of FGF-2, a single monolayer of protein bound to DP-10 was observed. These results demonstrate that the new surface can be used to resolve key questions relating to the binding of proteins to carbohydrates, including, when used in DPI, the resolution of the geometry of complexes, an area that is frequently controversial.


Assuntos
Fator 2 de Crescimento de Fibroblastos/química , Lactoferrina/química , Oligossacarídeos/química , Heparina/química , Interferometria , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA