Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 919: 383-396, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27975227

RESUMO

Analysis of protein-protein interactions is one of the mainstays of mass spectrometry-based proteomics and recent developments, which have simplified the methodology, have permitted non-specialised laboratories to adopt the approach. We introduce and review three complimentary methods which allow for the targeted, global and site-specific analysis of protein complexes. Co-precipitation of endogenous or ectopically expressed proteins and their complexes followed by proteomic analysis allows for the discovery and accurate quantification of specific protein interactions. Whereas complimentary methods, such as co-purification of entire complexes based on physico-chemical attributes, can give a snap-shot of the composition and dynamics of protein complexes on a global scale. Cross-linking on the other hand can pinpoint the amino acids involved in protein-protein interactions to such a resolution that the likely complex can be reconstructed computationally.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas/análise , Proteoma , Proteômica/métodos , Algoritmos , Animais , Reagentes de Ligações Cruzadas/química , Ensaios de Triagem em Larga Escala , Humanos , Imunoprecipitação , Processamento de Proteína Pós-Traducional , Proteínas/genética , Reprodutibilidade dos Testes , Software
2.
J Proteome Res ; 13(6): 2874-86, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24766643

RESUMO

Epithelial to mesenchymal transition (EMT) is a fundamental cell differentiation/dedifferentiation process which is associated with dramatic morphological changes. Formerly polarized and immobile epithelial cells which form cell junctions and cobblestone-like cell sheets undergo a transition into highly motile, elongated, mesenchymal cells lacking cell-to-cell adhesions. To explore how the proteome is affected during EMT we profiled protein expression and tracked cell biological markers in Madin-Darby kidney epithelial cells undergoing hepatocyte growth factor (HGF) induced EMT. We were able to identify and quantify over 4000 proteins by mass spectrometry. Enrichment analysis of this revealed that expression of proteins associated with the ubiquitination machinery was induced, whereas expression of proteins regulating apoptotic pathways was suppressed. We show that both the mammalian Hippo/MST2 and the ISG15 pathways are regulated at the protein level by ubiquitin ligases. Inhibition of the Hippo pathway by overexpression of either ITCH or A-Raf promotes HGF-induced EMT. Conversely, ISG15 overexpression is sufficient to induce cell scattering and an elongated morphology without external stimuli. Thus, we demonstrate for the first time that the Hippo/MST2 and ISG15 pathways are regulated during growth-factor induced EMT.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento de Hepatócito/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ubiquitinas/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular , Cães , Fator de Crescimento de Hepatócito/farmacologia , Integrinas/metabolismo , Células Madin Darby de Rim Canino , Proteoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Oncotarget ; 6(41): 43182-201, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26673823

RESUMO

Despite intensive study, many mysteries remain about the MYCN oncogene's functions. Here we focus on MYCN's role in neuroblastoma, the most common extracranial childhood cancer. MYCN gene amplification occurs in 20% of cases, but other recurrent somatic mutations are rare. This scarcity of tractable targets has hampered efforts to develop new therapeutic options. We employed a multi-level omics approach to examine MYCN functioning and identify novel therapeutic targets for this largely un-druggable oncogene. We used systems medicine based computational network reconstruction and analysis to integrate a range of omic techniques: sequencing-based transcriptomics, genome-wide chromatin immunoprecipitation, siRNA screening and interaction proteomics, revealing that MYCN controls highly connected networks, with MYCN primarily supressing the activity of network components. MYCN's oncogenic functions are likely independent of its classical heterodimerisation partner, MAX. In particular, MYCN controls its own protein interaction network by transcriptionally regulating its binding partners.Our network-based approach identified vulnerable therapeutically targetable nodes that function as critical regulators or effectors of MYCN in neuroblastoma. These were validated by siRNA knockdown screens, functional studies and patient data. We identified ß-estradiol and MAPK/ERK as having functional cross-talk with MYCN and being novel targetable vulnerabilities of MYCN-amplified neuroblastoma. These results reveal surprising differences between the functioning of endogenous, overexpressed and amplified MYCN, and rationalise how different MYCN dosages can orchestrate cell fate decisions and cancerous outcomes. Importantly, this work describes a systems-level approach to systematically uncovering network based vulnerabilities and therapeutic targets for multifactorial diseases by integrating disparate omic data types.


Assuntos
Genes myc/fisiologia , Neuroblastoma/genética , Proteínas Nucleares/fisiologia , Proteínas Oncogênicas/fisiologia , Mapas de Interação de Proteínas/fisiologia , Western Blotting , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteômica/métodos , Transdução de Sinais/fisiologia
4.
Biology (Basel) ; 3(2): 320-32, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24833512

RESUMO

With the advent of the "-omics" era, biological research has shifted from functionally analyzing single proteins to understanding how entire protein networks connect and adapt to environmental cues. Frequently, pathological processes are initiated by a malfunctioning protein network rather than a single protein. It is therefore crucial to investigate the regulation of proteins in the context of a pathway first and signaling network second. In this study, we demonstrate that a quantitative interaction proteomic approach, combining immunoprecipitation, in-solution digestion and label-free quantification mass spectrometry, provides data of high accuracy and depth. This protocol is applicable, both to tagged, exogenous and untagged, endogenous proteins. Furthermore, it is fast, reliable and, due to a label-free quantitation approach, allows the comparison of multiple conditions. We further show that we are able to generate data in a medium throughput fashion and that we can quantify dynamic interaction changes in signaling pathways in response to mitogenic stimuli, making our approach a suitable method to generate data for system biology approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA