Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2204621120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098055

RESUMO

The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Paclitaxel , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Macrófagos Associados a Tumor/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Hidrogéis/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
2.
Brain Behav Immun ; 116: 160-174, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070624

RESUMO

Acute cerebral ischemia triggers a profound inflammatory response. While macrophages polarized to an M2-like phenotype clear debris and facilitate tissue repair, aberrant or prolonged macrophage activation is counterproductive to recovery. The inhibitory immune checkpoint Programmed Cell Death Protein 1 (PD-1) is upregulated on macrophage precursors (monocytes) in the blood after acute cerebrovascular injury. To investigate the therapeutic potential of PD-1 activation, we immunophenotyped circulating monocytes from patients and found that PD-1 expression was upregulated in the acute period after stroke. Murine studies using a temporary middle cerebral artery (MCA) occlusion (MCAO) model showed that intraperitoneal administration of soluble Programmed Death Ligand-1 (sPD-L1) significantly decreased brain edema and improved overall survival. Mice receiving sPD-L1 also had higher performance scores short-term, and more closely resembled sham animals on assessments of long-term functional recovery. These clinical and radiographic benefits were abrogated in global and myeloid-specific PD-1 knockout animals, confirming PD-1+ monocytes as the therapeutic target of sPD-L1. Single-cell RNA sequencing revealed that treatment skewed monocyte maturation to a non-classical Ly6Clo, CD43hi, PD-L1+ phenotype. These data support peripheral activation of PD-1 on inflammatory monocytes as a therapeutic strategy to treat neuroinflammation after acute ischemic stroke.


Assuntos
Edema Encefálico , AVC Isquêmico , Humanos , Camundongos , Animais , Monócitos/metabolismo , Edema Encefálico/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473812

RESUMO

Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Invasividade Neoplásica/patologia , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Astrócitos/metabolismo , Microambiente Tumoral
4.
Small ; 19(11): e2207278, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651002

RESUMO

Drug delivery nanoparticles (NPs) based entirely on materials generally recognized as safe that provide widespread parenchymal distribution following intracranial administration via convection-enhanced delivery (CED) are introduced. Poly(lactic-co-glycolic acid) (PLGA) NPs are coated with various poloxamers, including F68, F98, or F127, via physical adsorption to render particle surfaces non-adhesive, thereby resisting interactions with brain extracellular matrix. F127-coated PLGA (F127/PLGA) NPs provide markedly greater distribution in healthy rat brains compared to uncoated NPs and widespread coverage in orthotopically-established brain tumors. Distribution analysis of variously-sized F127/PLGA NPs determines the average rat brain tissue porosity to be between 135 and 170 nm while revealing unprecedented brain coverage of larger F127/PLGA NPs with an aid of hydraulic pressure provided by CED. Importantly, F127/PLGA NPs can be lyophilized for long-term storage without compromising their ability to penetrate the brain tissue. Further, 65- and 200-nm F127/PLGA NPs lyophilized-reconstituted and administered in a moderately hyperosmolar infusate solution show further enhance particle dissemination in the brain via osmotically-driven enlargement of the brain tissue porosity. Combination of F127/PLGA NPs and osmotic tissue modulation provides a means with a clear regulatory path to maximize the brain distribution of large NPs that enable greater drug loading and prolong drug release.


Assuntos
Nanopartículas , Neoplasias , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Ácido Láctico , Portadores de Fármacos , Encéfalo , Tamanho da Partícula
5.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003507

RESUMO

Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Modelos Animais de Doenças
6.
Microcirculation ; 29(6-7): e12770, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35611457

RESUMO

OBJECTIVE: Monitoring microcirculation and visualizing microvasculature are critical for providing diagnosis to medical professionals and guiding clinical interventions. Ultrasound provides a medium for monitoring and visualization; however, there are challenges due to the complex microscale geometry of the vasculature and difficulties associated with quantifying perfusion. Here, we studied established and state-of-the-art ultrasonic modalities (using six probes) to compare their detection of slow flow in small microvasculature. METHODS: Five ultrasonic modalities were studied: grayscale, color Doppler, power Doppler, superb microvascular imaging (SMI), and microflow imaging (MFI), using six linear probes across two ultrasound scanners. Image readability was blindly scored by radiologists and quantified for evaluation. Vasculature visualization was investigated both in vitro (resolution and flow characterization) and in vivo (fingertip microvasculature detection). RESULTS: Superb Microvascular Imaging (SMI) and Micro Flow Imaging (MFI) modalities provided superior images when compared with conventional ultrasound imaging modalities both in vitro and in vivo. The choice of probe played a significant difference in detectability. The slowest flow detected (in the lab) was 0.1885 ml/s and small microvasculature of the fingertip were visualized. CONCLUSIONS: Our data demonstrated that SMI and MFI used with vascular probes operating at higher frequencies provided resolutions acceptable for microvasculature visualization, paving the path for future development of ultrasound devices for microcirculation monitoring.


Assuntos
Microvasos , Ultrassonografia Doppler , Microcirculação , Ultrassonografia/métodos , Microvasos/diagnóstico por imagem , Ultrassonografia Doppler/métodos
7.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456971

RESUMO

The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Barreira Hematoencefálica , Encéfalo , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Tecnologia
8.
Nanomedicine ; 23: 102115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655205

RESUMO

Together, medulloblastoma (MB) and atypical teratoid/rhabdoid tumors (AT/RT) represent two of the most prevalent pediatric brain malignancies. Current treatment involves radiation, which has high risks of developmental sequelae for patients under the age of three. New safer and more effective treatment modalities are needed. Cancer gene therapy is a promising alternative, but there are challenges with using viruses in pediatric patients. We developed a library of poly(beta-amino ester) (PBAE) nanoparticles and evaluated their efficacy for plasmid delivery of a suicide gene therapy to pediatric brain cancer models-specifically herpes simplex virus type I thymidine kinase (HSVtk), which results in controlled apoptosis of transfected cells. In vivo, PBAE-HSVtk treated groups had a greater median overall survival in mice implanted with AT/RT (P = 0.0083 vs. control) and MB (P < 0.0001 vs. control). Our data provide proof of principle for using biodegradable PBAE nanoparticles as a safe and effective nanomedicine for treating pediatric CNS malignancies.


Assuntos
Neoplasias Encefálicas , Terapia Genética , Herpesvirus Humano 1 , Nanopartículas , Timidina Quinase , Proteínas Virais , Animais , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Criança , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Timidina Quinase/biossíntese , Timidina Quinase/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Neurooncol ; 135(1): 47-56, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28735458

RESUMO

Neurofibromatosis type 2 (NF2), a neurogenetic condition manifest by peripheral nerve sheath tumors (PNST) throughout the neuroaxis for which there are no approved therapies. In vitro and in vivo studies presented here examine agents targeting signaling pathways, angiogenesis, and DNA repair mechanisms. In vitro dose response assays demonstrated potent activity of lapatinib and nilotinib against the mouse schwannoma SC4 (Nf2 -/-) cell line. We then examined the efficacy of everolimus, nilotinib, lapatinib, bevacizumab and radiation (RT) as mono- and combination therapies in flank and sciatic nerve in vivo NF2-PNST models. Data were analyzed using generalized linear models, two sample T-tests and paired T-tests, and linear regression models. SC4(Nf2 -/-) cells implanted in the flank or sciatic nerve showed similar rates of growth (p = 0.9748). Lapatinib, nilotinib and RT significantly reduced tumor growth rate versus controls in the in vivo flank model (p = 0.0025, 0.0062, and 0.009, respectively) whereas bevacizumab and everolimus did not. The best performers were tested in the in vivo sciatic nerve model of NF2 associated PNST, where chemoradiation outperformed nilotinib or lapatinib as single agents (nilotinib vs. nilotinib + RT, p = 0.0001; lapatinib versus lapatinib + RT, p < 0.0001) with no observed toxicity. There was no re-growth of tumors even 14 days after treatment was stopped. The combination of either lapatinib or nilotinib with RT resulted in greater delays in tumor growth rate than any modality alone. This data suggest that concurrent low dose RT and targeted therapy may have a role in addressing progressive PNST in patients with NF2.


Assuntos
Antineoplásicos/farmacologia , Neurilemoma/terapia , Neurofibromatose 2/terapia , Neoplasias do Sistema Nervoso Periférico/terapia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Everolimo/farmacologia , Lapatinib , Camundongos , Camundongos Nus , Camundongos Transgênicos , Modelos Estatísticos , Transplante de Neoplasias , Neurilemoma/patologia , Neurofibromatose 2/patologia , Neoplasias do Sistema Nervoso Periférico/patologia , Nervo Isquiático , Fatores de Tempo
10.
Trans Am Clin Climatol Assoc ; 128: 55-74, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790487

RESUMO

The Johns Hopkins Hunterian Neurosurgical Laboratory at the Johns Hopkins University School of Medicine was created in 1904 by Harvey Cushing and William Halsted and has had a long history of fostering surgical training, encouraging basis science research, and facilitating translational application. Over the past 30 years, the laboratory has addressed the paucity of brain tumor therapies. Pre-clinical work from the laboratory led to the development of carmustine wafers with initial US Food and Drug Administration (FDA) approval in 1996. Combining carmustine wafers, radiation, and temozolomide led to a significant increase in the median survival of patients with glioblastoma. The laboratory has also developed microchips and immunotherapy to further extend survival in this heretofore underserved population. These achievements were made possible by the dedication, commitment, and creativity of more than 300 trainees of the Hunterian Neurosurgical Laboratory. The laboratory demonstrates the beneficial influence of research experience as well its substantial impact on the field of biomedical research.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Educação Médica/história , Neurocirurgia/história , Faculdades de Medicina/história , Antineoplásicos/administração & dosagem , Antineoplásicos/história , Antineoplásicos/uso terapêutico , Baltimore , Pesquisa Biomédica/história , Implantes de Medicamento/história , Implantes de Medicamento/uso terapêutico , História do Século XX , Humanos , Mulheres/história
11.
Proc Natl Acad Sci U S A ; 111(45): 16071-6, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349381

RESUMO

Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood-brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Cápsulas , Caspase 3/metabolismo , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Doxorrubicina/farmacologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Ratos , Ratos Endogâmicos F344 , Temozolomida
12.
J Neurooncol ; 126(3): 433-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26626489

RESUMO

The blood-brain barrier (BBB) significantly reduces the delivery of many systemically administered agents to the central nervous system. Although temozolomide is the only chemotherapy to improve survival in patients with glioblastoma, its concentration in brain is only 20 % of that in blood. Regadenoson, an FDA approved adenosine receptor agonist used for cardiac stress testing, transiently disrupts rodent BBB allowing high molecular weight dextran (70 kD) to enter the brain. This study was conducted to determine if regadenoson could facilitate entry of temozolomide into normal rodent brain. Temozolomide (50 mg/kg) was administered by oral gavage to non-tumor bearing F344 rats. Two-thirds of the animals received a single dose of intravenous regadenoson 60-90 min later. All animals were sacrificed 120 or 360 min after temozolomide administration. Brain and plasma temozolomide concentrations were determined using HPLC/MS/MS. Brain temozolomide concentrations were significantly higher at 120 min when it was given with regadenoson versus alone (8.1 ± 2.7 and 5.1 ± 3.5 µg/g, P < 0.05). A similar trend was noted in brain:plasma ratios (0.45 ± 0.08 and 0.29 ± 0.09, P < 0.05). Brain concentrations and brain:plasma ratios were not significantly different 360 min after temozolomide administration. No differences were seen in plasma temozolomide concentrations with or without regadenoson. These results suggest co-administration of regadenoson with temozolomide results in 60% higher temozolomide levels in normal brain without affecting plasma concentrations. This novel approach to increasing intracranial concentrations of systemically administered agents has potential to improve the efficacy of chemotherapy in neuro-oncologic disorders.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Dacarbazina/análogos & derivados , Sistemas de Liberação de Medicamentos , Purinas/farmacologia , Pirazóis/farmacologia , Animais , Antineoplásicos Alquilantes/sangue , Antineoplásicos Alquilantes/farmacocinética , Dacarbazina/administração & dosagem , Dacarbazina/sangue , Dacarbazina/farmacocinética , Feminino , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem , Temozolomida , Distribuição Tecidual
13.
Neuroimage ; 113: 397-406, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25791782

RESUMO

The confluence of technological advances in optics, miniaturized electronic components and the availability of ever increasing and affordable computational power have ushered in a new era in functional neuroimaging, namely, an era in which neuroimaging of cortical function in unrestrained and unanesthetized rodents has become a reality. Traditional optical neuroimaging required animals to be anesthetized and restrained. This greatly limited the kinds of experiments that could be performed in vivo. Now one can assess blood flow and oxygenation changes resulting from functional activity and image functional response in disease models such as stroke and seizure, and even conduct long-term imaging of tumor physiology, all without the confounding effects of anesthetics or animal restraints. These advances are shedding new light on mammalian brain organization and function, and helping to elucidate loss of this organization or 'dysfunction' in a wide array of central nervous system disease models. In this review, we highlight recent advances in the fabrication, characterization and application of miniaturized head-mounted optical neuroimaging systems pioneered by innovative investigators from a wide array of disciplines. We broadly classify these systems into those based on exogenous contrast agents, such as single- and two-photon microscopy systems; and those based on endogenous contrast mechanisms, such as multispectral or laser speckle contrast imaging systems. Finally, we conclude with a discussion of the strengths and weaknesses of these approaches along with a perspective on the future of this exciting new frontier in neuroimaging.


Assuntos
Neuroimagem Funcional/instrumentação , Neuroimagem Funcional/métodos , Miniaturização , Animais , Encéfalo/anatomia & histologia , Encéfalo/patologia , Meios de Contraste , Desenho de Equipamento , Microscopia , Roedores
14.
Stroke ; 45(4): 1123-1130, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24627118

RESUMO

BACKGROUND AND PURPOSE: Extravascular optical coherence tomography (OCT), as a noninvasive imaging methodology with micrometer resolution, was evaluated in a murine model of carotid atherosclerosis by way of assessing the efficacy of pravastatin therapy. METHODS: An OCT device was engineered for extravascular plaque imaging. Wild-type mice and apolipoprotein E-deficient (ApoE(-/-)) mice were randomized to 3 treatment groups: (1) wild-type on a diet of standard rodent chow (n=13); (2) ApoE(-/-) on a high-fat, atherosclerotic diet (HFD; n=13); and (3) ApoE(-/-) on a HFD given daily pravastatin (n=13). Mice were anesthetized and the left common carotid was surgically exposed. Three-dimensional (3D; 2 spatial dimensions+time) and 4D (3 spatial dimensions+time) OCT images of the vessel lumen patency were evaluated. After perfusion, in situ OCT imaging was performed for statistical comparison with the in vivo results and final histology. RESULTS: Intraoperative OCT imaging positively identified carotid plaque in 100% of ApoE(-/-) mice on HFD. ApoE(-/-) mice on HFD had a significantly decreased lumen patency when compared with that in wild-type mice (P<0.001). Pravastatin therapy was found to increase lumen patency significantly in ApoE(-/-) mice on HFD (P<0.01; compared with ApoE(-/-) on HFD). The findings were confirmed with OCT imaging after perfusion and histology. CONCLUSIONS: OCT imaging offers the potential for real-time, detailed vessel lumen evaluation, potentially improving surgical accuracy and outcomes during cerebrovascular neurosurgical procedures. Pravastatin significantly increases vessel lumen patency in the ApoE(-/-) mouse on HFD.


Assuntos
Doenças das Artérias Carótidas/tratamento farmacológico , Doenças das Artérias Carótidas/patologia , Monitoramento de Medicamentos/métodos , Pravastatina/farmacologia , Tomografia de Coerência Óptica/métodos , Animais , Apolipoproteínas E/genética , Estenose das Carótidas/tratamento farmacológico , Estenose das Carótidas/patologia , Modelos Animais de Doenças , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
15.
J Neurooncol ; 116(1): 59-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24185441

RESUMO

Anti-angiogenic agents, such as bevacizumab (BEV), can induce normalization of the blood brain barrier, which may influence the penetration and activity of a co-administered cytotoxic drug. However, it is unknown whether this effect is associated with a benefit in overall survival. This study employed intracranial human glioma models to evaluate the effect of BEV alone and in combination with temozolomide (TMZ) and/or radiation therapy (XRT) on overall survival. One hundred eight male athymic rats were intracranially injected with either U251 or U87 human glioma. Ten or eleven days after tumor inoculation, animals bearing U251 and U87, respectively, were treated with: TMZ alone (50 mg/kg for 5 consecutive days, P.O.), BEV alone (15 mg/kg, I.V.), a combination of TMZ and BEV, or a combination of TMZ, BEV, and a single fraction of XRT (20 Gy). Controls received no treatment. The U87 experiment was repeated and the relationship between survival and the extent of anti-angiogenesis via anti-laminin antibodies for the detection of blood vessels was assessed. In both U87 glioma experiments, all of the treatment groups had a statistically significant increase in survival as compared to the control groups. Also, for both U87 experiments the combination groups of TMZ and BEV had significantly better survival when compared to either treatment administered alone, with 75% of animals demonstrating long-term survival (LTS) (defined as animals alive 120 days after tumor implantation) in one experiment and 25% LTS in the repeat experiment. In the U251 glioma experiment, all treated groups (except BEV alone) had significantly improved survival as compared to controls with minimal statistical variance among groups. The percent vessel area was lowest in the group of animals treated with BEV alone. The addition of BEV to TMZ and/or XRT had variable effect on prolonging survival in the two human glioma models tested with reduced tumor vascularity in groups treated with BEV. These results indicate that BEV has anti-angiogenic activity and does not seem to hinder the effect of TMZ.


Assuntos
Anticorpos/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioma/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Dacarbazina/uso terapêutico , Modelos Animais de Doenças , Seguimentos , Humanos , Laminina/metabolismo , Masculino , Ratos , Ratos Nus , Análise de Sobrevida , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancers (Basel) ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38927954

RESUMO

Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.

17.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767374

RESUMO

The neuromodulatory effects of focused ultrasound (FUS) have been demonstrated in animal models, and FUS has been used successfully to treat movement and psychiatric disorders in humans. However, despite the success of FUS, the mechanism underlying its effects on neurons remains poorly understood, making treatment optimization by tuning FUS parameters difficult. To address this gap in knowledge, we studied human neurons in vitro using neurons cultured from human-induced pluripotent stem cells (HiPSCs). Using HiPSCs allows for the study of human-specific neuronal behaviors in both physiologic and pathologic states. This report presents a protocol for using a high-throughput system that enables the monitoring and quantification of the neuromodulatory effects of FUS on HiPSC neurons. By varying the FUS parameters and manipulating the HiPSC neurons through pharmaceutical and genetic modifications, researchers can evaluate the neural responses and elucidate the neuro-modulatory effects of FUS on HiPSC neurons. This research could have significant implications for the development of safe and effective FUS-based therapies for a range of neurological and psychiatric disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microeletrodos , Neurônios , Humanos , Neurônios/fisiologia , Neurônios/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Ondas Ultrassônicas
18.
Exp Hematol Oncol ; 13(1): 13, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291540

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis. METHOD: OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival. RESULTS: We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells. CONCLUSION: These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.

19.
Oncoimmunology ; 13(1): 2338965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590799

RESUMO

Immunotherapy has revolutionized the treatment of cancers. Reinvigorating lymphocytes with checkpoint blockade has become a cornerstone of immunotherapy for multiple tumor types, but the treatment of glioblastoma has not yet shown clinical efficacy. A major hurdle to treat GBM with checkpoint blockade is the high degree of myeloid-mediated immunosuppression in brain tumors that limits CD8 T-cell activity. A potential strategy to improve anti-tumor efficacy against glioma is to use myeloid-modulating agents to target immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We found that the co-inhibition of the chemokine receptors CCR2 and CCR5 in murine model of glioma improves the survival and synergizes robustly with anti-PD-1 therapy. Moreover, the treatment specifically reduced the infiltration of monocytic-MDSCs (M-MDSCs) into brain tumors and increased lymphocyte abundance and cytokine secretion by tumor-infiltrating CD8 T cells. The depletion of T-cell subsets and myeloid cells abrogated the effects of CCR2 and CCR5 blockade, indicating that while broad depletion of myeloid cells does not improve survival, specific reduction in the infiltration of immunosuppressive myeloid cells, such as M-MDSCs, can boost the anti-tumor immune response of lymphocytes. Our study highlights the potential of CCR2/CCR5 co-inhibition in reducing myeloid-mediated immunosuppression in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Glioma/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células Mieloides/patologia , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral , Receptores CCR2 , Receptores CCR5/uso terapêutico
20.
J Neurooncol ; 111(3): 229-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23224713

RESUMO

OncoGel™ incorporates paclitaxel, a mitotic inhibitor, into ReGel™, a thermosensitive gel depot system to provide local delivery, enhance efficacy and limit systemic toxicity. In previous studies the alkylating agent temozolomide (TMZ) incorporated into a polymer, pCPP:SA, also for local delivery, and OncoGel were individually shown to increase efficacy in a rat glioma model. We investigated the effects of OncoGel with oral TMZ or locally delivered TMZ polymer, with and without radiotherapy (XRT) in rats with intracranial gliosarcoma. Eighty-nine animals were intracranially implanted with a 9L gliosarcoma tumor and divided into 12 groups that received various combinations of 4 treatment options; OncoGel 6.3 mg/ml (Day 0), 20 Gy XRT (Day 5), 50 % TMZ-pCPP:SA (Day 5), or oral TMZ (50 mg/kg, qd, Days 5-9). Animals were followed for survival for 120 days. Median survival for untreated controls, XRT alone or oral TMZ alone was 15, 19 and 28 days, respectively. OncoGel 6.3 or TMZ polymer alone extended median survival to 33 and 35 days, respectively (p = 0.0005; p < 0.0001, vs. untreated controls) with 50 % living greater than 120 days (LTS) in both groups. Oral TMZ/XRT extended median survival to 36 days (p = 0.0002), with no LTS. The group that received OncoGel and Oral TMZ did not reach median survival with 57 % LTS (p = 0.0002). All other combination groups [OncoGel/XRT], [TMZ polymer/XRT], [OncoGel/TMZ polymer], [OncoGel/TMZ polymer/XRT], and [OncoGel/oral TMZ/XRT] yielded greater than 50 % LTS (p < 0.0001 for each combination as compared to controls), therefore median survival was not reached. OncoGel/TMZ polymer and OncoGel/oral TMZ/XRT had 100 % LTS (p < 0.0001 and p = 0.0001 vs. oral TMZ/XRT, respectively). These results indicate that OncoGel given locally with oral or locally delivered TMZ and/or XRT significantly increased the number of LTS and improved median survival compared to oral TMZ and XRT given alone or in combination in a rodent intracranial gliosarcoma model.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Dacarbazina/análogos & derivados , Glioma/tratamento farmacológico , Glioma/radioterapia , Paclitaxel/uso terapêutico , Análise de Variância , Animais , Dacarbazina/uso terapêutico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Quimioterapia Combinada , Feminino , Géis/uso terapêutico , Humanos , Transplante de Neoplasias , Ratos , Ratos Endogâmicos F344 , Análise de Sobrevida , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA