Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(27): 12095-100, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20616087

RESUMO

Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.


Assuntos
Meio Ambiente Extraterreno/química , Marte , Silicatos/análise , Silicatos de Alumínio/análise , Silicatos de Alumínio/química , Asbestos Serpentinas/análise , Asbestos Serpentinas/química , Cloretos/análise , Cloretos/química , Compostos Férricos/análise , Compostos Férricos/química , Temperatura Alta , Caulim/análise , Caulim/química , Minerais/análise , Minerais/química , Silicatos/química , Análise Espectral/métodos , Fatores de Tempo
2.
Sci Rep ; 13(1): 1423, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755119

RESUMO

Tirez was a small and seasonal endorheic athalassohaline lagoon that was located in central Spain. In recent years, the lagoon has totally dried out, offering for the first time the opportunity to analyze its desiccation process as a "time-analog" to similar events occurred in paleolakes with varying salinity during the wet-to-dry transition on early Mars. On the martian cratered highlands, an early period of water ponding within enclosed basins evolved to a complete desiccation of the lakes, leading to deposition of evaporitic sequences during the Noachian and into the Late Hesperian. As Tirez also underwent a process of desiccation, here we describe (i) the microbial ecology of Tirez when the lagoon was still active 20 years ago, with prokaryotes adapted to extreme saline conditions; (ii) the composition of the microbial community in the dried lake sediments today, in many case groups that thrive in sediments of extreme environments; and (iii) the molecular and isotopic analysis of the lipid biomarkers that can be recovered from the sediments today. We discuss the implications of these results to better understanding the ecology of possible Martian microbial communities during the wet-to-dry transition at the end of the Hesperian, and how they may inform about research strategies to search for possible biomarkers in Mars after all the water was lost.


Assuntos
Meio Ambiente Extraterreno , Marte , Dessecação , Espanha , Água
3.
J Renin Angiotensin Aldosterone Syst ; 9(2): 96-102, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18584585

RESUMO

INTRODUCTION: Our objective was to evaluate the effect of blocking the renin-angiotensin system (RAS) on the expression of transforming growth factor-beta 1 (TGF-beta1), platelet derived growth factor-B (PDGF-B), tumour necrosis factor-alpha (TNF-alpha) and vascular endothelial growth factor (VEGF) in diabetic kidney glomeruli. MATERIALS AND METHOD: 1) Uninephrectomised streptozotocin induced diabetic rats were treated during eight months with vehicle (CD) or irbesartan (ID). Uninephrectomised non-diabetic rats were used as control group (ND). Protein urinary excretion and morphological renal damage were analysed. Glomerular expression of TGF-beta1, PDGF-B, VEGF and TNF-alpha were evaluated by Western blot and Immunohistochemistry. 2) Isolated glomeruli of diabetic rats were incubated 24-hours in the presence of different doses of irbesartan. Glomerular expression of TGF-beta1, PDGF-B, TNF-alpha and VEGF were determined by Western blot. RESULTS: ND and ID presented lower renal injury and proteinuria than CD (p<0.05). Glomerular expression of TGF-beta1, PDGF-B, TNF-alpha and VEGF were similar in ND and ID, but lower than in CD (p<0.05). In addition, in isolated diabetic rat glomeruli, irbesartan reduced the content of all these factors. CONCLUSION: Systemic and local administration of irbesartan lowers glomerular expression of TGF-beta1, PDGF-B, VEGF and TNF-alpha. These data suggest that part of the effect of lowering the expression of these growth factors and cytokines is due to a direct blockade of glomerular RAS.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Angiotensina II/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Tetrazóis/farmacologia , Animais , Western Blotting , Diabetes Mellitus Experimental/patologia , Progressão da Doença , Imuno-Histoquímica , Irbesartana , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiologia , Masculino , Fator de Crescimento Derivado de Plaquetas/biossíntese , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/efeitos dos fármacos , Fator de Crescimento Transformador beta1/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese
4.
J Geophys Res Planets ; 122(9): 1855-1879, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29104844

RESUMO

Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

5.
Astrobiology ; 16(2): 143-58, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26836592

RESUMO

At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Geologia , Robótica , Volatilização , Água/química
6.
Geochem Geophys Geosyst ; 16(4): 1172-1197, 2015 04.
Artigo em Inglês | MEDLINE | ID: mdl-27642264

RESUMO

Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium-7Li and 6Li-have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals-the source of Li-and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history.

7.
Astrobiology ; 10(8): 821-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21087162

RESUMO

Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Marte , Evolução Planetária , Vida , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA