Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2205786120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37058487

RESUMO

Stroke-induced cerebral microvascular dysfunction contributes to aggravation of neuronal injury and compromises the efficacy of current reperfusion therapies. Understanding the molecular alterations in cerebral microvessels in stroke will provide original opportunities for scientific investigation of novel therapeutic strategies. Toward this goal, using a recently optimized method which minimizes cell activation and preserves endothelial cell interactions and RNA integrity, we conducted a genome-wide transcriptomic analysis of cerebral microvessels in a mouse model of stroke and compared these transcriptomic alterations with the ones observed in human, nonfatal, brain stroke lesions. Results from these unbiased comparative analyses have revealed the common alterations in mouse stroke microvessels and human stroke lesions and identified shared molecular features associated with vascular disease (e.g., Serpine1/Plasminogen Activator Inhibitor-1, Hemoxygenase-1), endothelial activation (e.g., Angiopoietin-2), and alterations in sphingolipid metabolism and signaling (e.g., Sphigosine-1-Phosphate Receptor 2). Sphingolipid profiling of mouse cerebral microvessels validated the transcript data and revealed the enrichment of sphingomyelin and sphingoid species in the cerebral microvasculature compared to brain and the stroke-induced increase in ceramide species. In summary, our study has identified novel molecular alterations in several microvessel-enriched, translationally relevant, and druggable targets, which are potent modulators of endothelial function. Our comparative analyses have revealed the presence of molecular features associated with cerebral microvascular dysfunction in human chronic stroke lesions. The results shared here provide a detailed resource for therapeutic discovery of candidates for neurovascular protection in stroke and potentially, other pathologies exhibiting cerebral microvascular dysfunction.


Assuntos
Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Acidente Vascular Cerebral/metabolismo , Encéfalo/metabolismo , Endotélio/metabolismo , Microvasos/patologia , Esfingolipídeos/metabolismo , Barreira Hematoencefálica/metabolismo
2.
BMC Nephrol ; 25(1): 101, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493099

RESUMO

BACKGROUND: Predicting time to renal replacement therapy (RRT) is important in patients at high risk for end-stage kidney disease. We developed and validated machine learning models for predicting the time to RRT and compared its accuracy with conventional prediction methods that uses the rate of estimated glomerular filtration rate (eGFR) decline. METHODS: Data of adult chronic kidney disease (CKD) patients who underwent hemodialysis at Oita University Hospital from April 2016 to March 2021 were extracted from electronic medical records (N = 135). A new machine learning predictor was compared with the established prediction method that uses the eGFR decline rate and the accuracy of the prediction models was determined using the coefficient of determination (R2). The data were preprocessed and split into training and validation datasets. We created multiple machine learning models using the training data and evaluated their accuracy using validation data. Furthermore, we predicted the time to RRT using a conventional prediction method that uses the eGFR decline rate for patients who had measured eGFR three or more times in two years and evaluated its accuracy. RESULTS: The least absolute shrinkage and selection operator regression model exhibited moderate accuracy with an R2 of 0.60. By contrast, the conventional prediction method was found to be extremely low with an R2 of -17.1. CONCLUSIONS: The significance of this study is that it shows that machine learning can predict time to RRT moderately well with continuous values from data at a single time point. This approach outperforms the conventional prediction method that uses eGFR time series data and presents new avenues for CKD treatment.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Adulto , Humanos , Insuficiência Renal Crônica/terapia , Terapia de Substituição Renal , Falência Renal Crônica/terapia , Diálise Renal , Taxa de Filtração Glomerular , Aprendizado de Máquina
3.
PLoS Genet ; 17(1): e1009113, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476333

RESUMO

A Darwinian evolutionary shift occurs early in the neutral evolution of advanced colorectal carcinoma (CRC), and copy number aberrations (CNA) are essential in the transition from adenoma to carcinoma. In light of this primary evolution, we investigated the evolutionary principles of the genome that foster postoperative recurrence of CRC. CNA and neoantigens (NAG) were compared between early primary tumors with recurrence (CRCR) and early primary tumors without recurrence (precancerous and early; PCRC). We compared CNA, single nucleotide variance (SNV), RNA sequences, and T-cell receptor (TCR) repertoire between 9 primary and 10 metastatic sites from 10 CRCR cases. We found that NAG in primary sites were fewer in CRCR than in PCRC, while the arm level CNA were significantly higher in primary sites in CRCR than in PCRC. Further, a comparison of genomic aberrations of primary and metastatic conditions revealed no significant differences in CNA. The driver mutations in recurrence were the trunk of the evolutionary phylogenic tree from primary sites to recurrence sites. Notably, PD-1 and TIM3, T cell exhaustion-related molecules of the tumor immune response, were abundantly expressed in metastatic sites compared to primary sites along with the increased number of CD8 expressing cells. The postoperative recurrence-free survival period was only significantly associated with the NAG levels and TCR repertoire diversity in metastatic sites. Therefore, CNA with diminished NAG and diverse TCR repertoire in pre-metastatic sites may determine postoperative recurrence of CRC.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor de Morte Celular Programada 1/genética , Adenoma/imunologia , Adenoma/patologia , Adenoma/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Variações do Número de Cópias de DNA/genética , Feminino , Deriva Genética , Genoma Humano/genética , Humanos , Imunidade/genética , Imunidade/imunologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Período Pós-Operatório , Intervalo Livre de Progressão , Receptores de Antígenos de Linfócitos T/genética
4.
No Shinkei Geka ; 52(2): 374-379, 2024 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-38514127

RESUMO

Preoperative simulation is essential to safely complete neurosurgical procedures. A vascular-oriented approach is important in cerebrovascular disorder surgery, considering anatomical variations among individuals. Particularly, subarachnoid hemorrhage surgery requires a detailed simulation of a safe dissection procedure, considering the rupture point of the aneurysm, and combined computed tomography or magnetic resonance imaging images with cerebral angiography can be useful. We present a case of subarachnoid hemorrhage and introduce the preoperative simulation performed at our hospital.


Assuntos
Aneurisma Roto , Transtornos Cerebrovasculares , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/cirurgia , Craniotomia , Procedimentos Neurocirúrgicos/métodos , Aneurisma Roto/cirurgia
5.
Br J Cancer ; 128(12): 2206-2217, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076565

RESUMO

BACKGROUND: Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional sampling to encompass the intra- and inter-tumoral heterogeneity. METHODS: We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39-77 ICC tumour samples and eleven normal samples. Further, we analysed their cell proliferation and viability. RESULTS: We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of 'Val Leu Ile degradation pathway'. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine, and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in all cases with genomic diversity and might play important roles in tumour progression and overall survival. CONCLUSIONS: We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic interventions.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Proteômica , Aminoácidos de Cadeia Ramificada , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Transaminases
6.
Circ Res ; 128(3): 363-382, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33301355

RESUMO

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Assuntos
Barreira Hematoencefálica/metabolismo , Artérias Cerebrais/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Ataque Isquêmico Transitório/metabolismo , AVC Isquêmico/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Ataque Isquêmico Transitório/prevenção & controle , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/prevenção & controle , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/genética , Grau de Desobstrução Vascular
7.
Acta Neurochir (Wien) ; 165(12): 4213-4219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37726426

RESUMO

PURPOSE: The anatomical association between the lesion and the perforating arteries supplying the pyramidal tract in insulo-opercular glioma resection should be evaluated. This study reported a novel method combining the intra-arterial administration of contrast medium and ultrahigh-resolution computed tomography angiography (UHR-IA-CTA) for visualizing the lenticulostriate arteries (LSAs), long insular arteries (LIAs), and long medullary arteries (LMAs) that supply the pyramidal tract in two patients with insulo-opercular glioma. METHODS: This method was performed by introducing a catheter to the cervical segment of the internal carotid artery. The infusion rate was set at 3 mL/s for 3 s, and the delay time from injection to scanning was determined based on the time-to-peak on angiography. On 2- and 20-mm-thick UHR-IA-CTA slab images and fusion with magnetic resonance images, the anatomical associations between the perforating arteries and the tumor and pyramidal tract were evaluated. RESULTS: This novel method clearly showed the relationship between the perforators that supply the pyramidal tract and tumor. It showed that LIAs and LMAs were far from the lesion but that the proximal LSAs were involved in both cases. Based on these results, subtotal resection was achieved without complications caused by injury of perforators. CONCLUSION: UHR-IA-CTA can be used to visualize the LSAs, LIAs, and LMAs clearly and provide useful preoperative information for insulo-opercular glioma resection.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Angiografia por Tomografia Computadorizada , Córtex Cerebral/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Artéria Cerebral Média/patologia , Angiografia , Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/cirurgia , Artérias Cerebrais/patologia
8.
Tohoku J Exp Med ; 258(4): 327-332, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351615

RESUMO

Antithrombin deficiency is a high-risk factor for venous thromboembolism during pregnancy, whereas cerebral venous thrombosis is rare. Cerebral venous thrombosis related to coronavirus disease 2019 (COVID-19) vaccines has been reported; however, there are a few reports of cerebral venous thrombosis after a messenger RNA (mRNA) vaccination. A 25-year-old female in her sixth week of pregnancy presented with headache 24 days after BNT162b2 mRNA COVID-19 vaccination. The following day, she presented with altered sensorium and was diagnosed with severe cerebral venous thrombosis. She demonstrated heparin resistance and was found to have an inherited antithrombin deficiency. A heterozygous missense variant in SERPINC1 (c.379T>C, p.Cys127Arg, 'AT Morioka') was detected by DNA analysis. Despite intensive care with unfractionated heparin, antithrombin concentrate, and repeated endovascular treatments, she died on the sixth day of hospitalization. Cerebral venous thrombosis in pregnant women with an antithrombin deficiency can follow a rapid and fatal course. Treatment with unfractionated heparin and antithrombin concentrate may be ineffective in severe cerebral venous thrombosis cases with antithrombin deficiency. Early recognition of antithrombin deficiency and an immediate switch to other anticoagulants may be required. Although the association between cerebral venous thrombosis and the vaccine is uncertain, COVID-19 vaccinations may require careful evaluation for patients with prothrombic factors.


Assuntos
Deficiência de Antitrombina III , COVID-19 , Trombose Venosa , Humanos , Feminino , Gravidez , Adulto , Gestantes , COVID-19/complicações , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , Heparina , RNA Mensageiro , Deficiência de Antitrombina III/complicações , Deficiência de Antitrombina III/genética , Antitrombinas/uso terapêutico , Anticoagulantes , Trombose Venosa/etiologia , Vacinação/efeitos adversos
9.
Cancer Sci ; 111(4): 1039-1046, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31957175

RESUMO

Cancer is a leading cause of death worldwide, and the incidence continues to increase. Despite major research aimed at discovering and developing novel and effective anticancer drugs, oncology drug development is a lengthy and costly process, with high attrition rates. Drug repositioning (DR, also referred to as drug repurposing), the process of finding new uses for approved noncancer drugs, has been gaining popularity in the past decade. DR has become a powerful alternative strategy for discovering and developing novel anticancer drug candidates from the existing approved drug space. Indeed, the availability of several large established libraries of clinical drugs and rapid advances in disease biology, genomics/transcriptomics/proteomics and bioinformatics has accelerated the pace of activity-based, literature-based and in silico DR, thereby improving safety and reducing costs. However, DR still faces financial obstacles in clinical trials, which could limit its practical use in the clinic. Here, we provide a brief review of DR in cancer and discuss difficulties in the development of DR for clinical use. Furthermore, we introduce some promising DR candidates for anticancer therapy in Japan.


Assuntos
Antineoplásicos/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos , Neoplasias/tratamento farmacológico , Biologia Computacional , Humanos , Japão , Neoplasias/epidemiologia
10.
BMC Cancer ; 20(1): 192, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143591

RESUMO

BACKGROUND: Altered glycosylation associated with hepatocellular carcinoma (HCC) is well documented. However, few reports have investigated the association between dedifferentiation and glycosylation. Therefore, the aim of this study was to analyze glycosylation associated with dedifferentiation of HCC within the same nodule and to investigate glycosyltransferase related to the glycosylation. METHODS: We analyzed resected HCC specimens (n = 50) using lectin microarray to comprehensively and sensitively analyze glycan profiles, and identify changes to glycosylation between well- and moderately-differentiated components within the same nodule. Moreover, we performed immunohistochemical staining of mannosyl(α-1,3-)-glycoprotein ß-1,2-N-acetylglucosaminyltransferase (MGAT1), which is an essential glycosyltransferase that converts high-mannose glycans to complex- or hybrid-type N-glycans. RESULTS: Four lectins from Narcissus pseudonarcissus agglutinin (NPA), Concanavalin A, Galanthus nivalis agglutinin, and Calystegia sepium agglutinin were significantly elevated in moderately-differentiated components of HCC compared with well-differentiated components, and all lectins showed binding specificity to high-mannose glycans. Therefore, these structures were represented to a greater extent in moderately-differentiated components than in well-differentiated ones. Immunohistochemical staining revealed significantly increased NPA expression and decreased MGAT1 expression in moderately-differentiated components. Low MGAT1 expression in moderately-differentiated components of tumors was associated with intrahepatic metastasis and had tendency for poor prognosis. CONCLUSION: Dedifferentiation of well-differentiated HCC is associated with an increase in high-mannose glycans. MGAT1 may play a role in the dedifferentiation of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Concanavalina A/metabolismo , Neoplasias Hepáticas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Lectinas de Plantas/metabolismo , Idoso , Calystegia/química , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Intervalo Livre de Doença , Feminino , Glicosilação , Humanos , Imuno-Histoquímica/métodos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , N-Acetilglucosaminiltransferases/metabolismo , Narcissus/química , Imagem Óptica/métodos , Polissacarídeos/química , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA