Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 144(43): 19778-19790, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36191139

RESUMO

Fluorogenic probes for bioimaging have become essential tools for life science and medicine, and the key to their development is a precise understanding of the mechanisms available for fluorescence off/on control, such as photoinduced electron transfer (PeT) and Förster resonance energy transfer (FRET). Here we establish a new molecular design strategy to rationally develop activatable fluorescent probes, which exhibit a fluorescence off/on change in response to target biomolecules, by controlling the twisted intramolecular charge transfer (TICT) process. This approach was developed on the basis of a thorough investigation of the fluorescence quenching mechanism of N-phenyl rhodamine dyes (commercially available as the QSY series) by means of time-dependent density functional theory (TD-DFT) calculations and photophysical evaluation of their derivatives. To illustrate and validate this TICT-based design strategy, we employed it to develop practical fluorogenic probes for HaloTag and SNAP-tag. We further show that the TICT-controlled fluorescence off/on mechanism is generalizable by synthesizing a Si-rhodamine-based fluorogenic probe for HaloTag, thus providing a palette of chemical dyes that spans the visible and near-infrared range.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Rodaminas , Ionóforos
2.
J Neurosci ; 40(43): 8367-8385, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32994339

RESUMO

The ability of animals to retrieve memories stored in response to the environment is essential for behavioral adaptation. Norepinephrine (NE)-containing neurons in the brain play a key role in the modulation of synaptic plasticity underlying various processes of memory formation. However, the role of the central NE system in memory retrieval remains unclear. Here, we developed a novel chemogenetic activation strategy exploiting insect olfactory ionotropic receptors (IRs), termed "IR-mediated neuronal activation," and used it for selective stimulation of NE neurons in the locus coeruleus (LC). Drosophila melanogaster IR84a and IR8a subunits were expressed in LC NE neurons in transgenic mice. Application of phenylacetic acid (a specific ligand for the IR84a/IR8a complex) at appropriate doses induced excitatory responses of NE neurons expressing the receptors in both slice preparations and in vivo electrophysiological conditions, resulting in a marked increase of NE release in the LC nerve terminal regions (male and female). Ligand-induced activation of LC NE neurons enhanced the retrieval process of conditioned taste aversion without affecting taste sensitivity, general arousal state, and locomotor activity. This enhancing effect on taste memory retrieval was mediated, in part, through α1- and ß-adrenergic receptors in the basolateral nucleus of the amygdala (BLA; male). Pharmacological inhibition of LC NE neurons confirmed the facilitative role of these neurons in memory retrieval via adrenergic receptors in the BLA (male). Our findings indicate that the LC NE system, through projections to the BLA, controls the retrieval process of taste associative memory.SIGNIFICANCE STATEMENT Norepinephrine (NE)-containing neurons in the brain play a key role in the modulation of synaptic plasticity underlying various processes of memory formation, but the role of the NE system in memory retrieval remains unclear. We developed a chemogenetic activation system based on insect olfactory ionotropic receptors and used it for selective stimulation of NE neurons in the locus coeruleus (LC) in transgenic mice. Ligand-induced activation of LC NE neurons enhanced the retrieval of conditioned taste aversion, which was mediated, in part, through adrenoceptors in the basolateral amygdala. Pharmacological blockade of LC activity confirmed the facilitative role of these neurons in memory retrieval. Our findings indicate that the LC-amygdala pathway plays an important role in the recall of taste associative memory.


Assuntos
Locus Cerúleo/efeitos dos fármacos , Memória/fisiologia , Norepinefrina/fisiologia , Receptores Adrenérgicos/fisiologia , Células Receptoras Sensoriais/fisiologia , Paladar/fisiologia , Animais , Nível de Alerta/fisiologia , Drosophila melanogaster , Fenômenos Eletrofisiológicos , Humanos , Locus Cerúleo/citologia , Memória/efeitos dos fármacos , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Fenilacetatos/farmacologia , Receptores Adrenérgicos/efeitos dos fármacos , Receptores Odorantes/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Paladar/efeitos dos fármacos , Paladar/genética
3.
J Biol Chem ; 295(25): 8589-8595, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32381505

RESUMO

Synapse formation is a dynamic process essential for the development and maturation of the neuronal circuitry in the brain. At the synaptic cleft, trans-synaptic protein-protein interactions are major biological determinants of proper synapse efficacy. The balance of excitatory and inhibitory synaptic transmission (E-I balance) stabilizes synaptic activity, and dysregulation of the E-I balance has been implicated in neurodevelopmental disorders, including autism spectrum disorders. However, the molecular mechanisms underlying the E-I balance remain to be elucidated. Here, using single-cell transcriptomics, immunohistochemistry, and electrophysiology approaches to murine CA1 pyramidal neurons obtained from organotypic hippocampal slice cultures, we investigate neuroligin (Nlgn) genes that encode a family of postsynaptic adhesion molecules known to shape excitatory and inhibitory synaptic function. We demonstrate that the NLGN3 protein differentially regulates inhibitory synaptic transmission in a splice isoform-dependent manner at hippocampal CA1 synapses. We also found that distinct subcellular localizations of the NLGN3 isoforms contribute to the functional differences observed among these isoforms. Finally, results from single-cell RNA-Seq analyses revealed that Nlgn1 and Nlgn3 are the major murine Nlgn genes and that the expression levels of the Nlgn splice isoforms are highly diverse in CA1 pyramidal neurons. Our results delineate isoform-specific effects of Nlgn genes on the E-I balance in the murine hippocampus.


Assuntos
Região CA1 Hipocampal/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Potenciais Pós-Sinápticos Excitadores , Imuno-Histoquímica , Potenciais Pós-Sinápticos Inibidores , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA
4.
Eur J Neurosci ; 54(8): 6902-6911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32248570

RESUMO

Dendritic spines are tiny protrusions emanating from the neuronal dendrites, typically housing single excitatory postsynapses. Structural plasticity of dendritic spines is considered to be essential for synaptic functional plasticity and also reorganization of neural circuits during learning and memory. Structural plasticity of spines is mediated by complex biochemical signaling with various spatial and temporal scales. A variety of methods based on pharmacological, genetic, molecular, imaging and optical approaches has been developed and applied to dissect the complex signal transduction pathways. In this review, we overview both conventional and new methodological approaches to identify, monitor and manipulate key molecules for structural plasticity of dendritic spines, ultimately aiming to understand the molecular mechanism of learning and memory in behaving animals.


Assuntos
Espinhas Dendríticas , Plasticidade Neuronal , Animais , Aprendizagem , Neurônios , Sinapses
5.
Proc Natl Acad Sci U S A ; 113(15): 4206-11, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035941

RESUMO

Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Dopamina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Camundongos , Camundongos Knockout
6.
Proc Natl Acad Sci U S A ; 113(8): 2282-7, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858447

RESUMO

In Purkinje cells (PCs) of the cerebellum, a single "winner" climbing fiber (CF) monopolizes proximal dendrites, whereas hundreds of thousands of parallel fibers (PFs) innervate distal dendrites, and both CF and PF inputs innervate a narrow intermediate domain. It is unclear how this segregated CF and PF innervation is established on PC dendrites. Through reconstruction of dendritic innervation by serial electron microscopy, we show that from postnatal day 9-15 in mice, both CF and PF innervation territories vigorously expand because of an enlargement of the region of overlapping innervation. From postnatal day 15 onwards, segregation of these territories occurs with robust shortening of the overlapping proximal region. Thus, innervation territories by the heterologous inputs are refined during the early postnatal period. Intriguingly, this transition is arrested in mutant mice lacking the type 1 metabotropic glutamate receptor (mGluR1) or protein kinase Cγ (PKCγ), resulting in the persistence of an abnormally expanded overlapping region. This arrested territory refinement is rescued by lentivirus-mediated expression of mGluR1α into mGluR1-deficient PCs. At the proximal dendrite of rescued PCs, PF synapses are eliminated and free spines emerge instead, whereas the number and density of CF synapses are unchanged. Because the mGluR1-PKCγ signaling pathway is also essential for the late-phase of CF synapse elimination, this signaling pathway promotes the two key features of excitatory synaptic wiring in PCs, namely CF monoinnervation by eliminating redundant CF synapses from the soma, and segregated territories of CF and PF innervation by eliminating competing PF synapses from proximal dendrites.


Assuntos
Células de Purkinje/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Dendritos/fisiologia , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Modelos Neurológicos , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Células de Purkinje/ultraestrutura , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais , Sinapses/fisiologia
7.
J Neurosci ; 37(10): 2723-2733, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28167674

RESUMO

The ventral striatum is involved in motivated behavior. Akin to the dorsal striatum, the ventral striatum contains two parallel pathways: the striatomesencephalic pathway consisting of dopamine receptor Type 1-expressing medium spiny neurons (D1-MSNs) and the striatopallidal pathway consisting of D2-MSNs. These two genetically identified pathways are thought to encode opposing functions in motivated behavior. It has also been reported that D1/D2 genetic selectivity is not attributed to the anatomical discrimination of two pathways. We wanted to determine whether D1- and D2-MSNs in the ventral striatum functioned in an opposing manner as previous observations claimed, and whether D1/D2 selectivity corresponded to a functional segregation in motivated behavior of mice. To address this question, we focused on the lateral portion of ventral striatum as a region implicated in food-incentive, goal-directed behavior, and recorded D1 or D2-MSN activity by using a gene-encoded ratiometric Ca2+ indicator and by constructing a fiberphotometry system, and manipulated their activities via optogenetic inhibition during ongoing behaviors. We observed concurrent event-related compound Ca2+ elevations in ventrolateral D1- and D2-MSNs, especially at trial start cue-related and first lever press-related times. D1 or D2 selective optogenetic inhibition just after the trial start cue resulted in a reduction of goal-directed behavior, indicating a shared coding of motivated behavior by both populations at this time. Only D1-selective inhibition just after the first lever press resulted in the reduction of behavior, indicating D1-MSN-specific coding at that specific time. Our data did not support opposing encoding by both populations in food-incentive, goal-directed behavior.SIGNIFICANCE STATEMENT An opposing role of dopamine receptor Type 1 or Type 2-expressing medium spiny neurons (D1-MSNs or D2-MSNs) on striatum-mediated behaviors has been widely accepted. However, this idea has been questioned by recent reports. In the present study, we measured concurrent Ca2+ activity patterns of D1- and D2-MSNs in the ventrolateral striatum during food-incentive, goal-directed behavior in mice. According to Ca2+ activity patterns, we conducted timing-specific optogenetic inhibition of each type of MSN. We demonstrated that both D1- and D2-MSNs in the ventrolateral striatum commonly and positively encoded action initiation, whereas only D1-MSNs positively encoded sustained motivated behavior. These findings led us to reconsider the prevailing notion of a functional segregation of MSN activity in the ventral striatum.


Assuntos
Corpo Estriado/fisiologia , Comportamento Alimentar/fisiologia , Motivação/fisiologia , Neurônios/fisiologia , Receptores Dopaminérgicos/metabolismo , Recompensa , Animais , Comportamento Animal/fisiologia , Retroalimentação Psicológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/fisiologia
8.
J Neurosci ; 35(10): 4215-28, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762668

RESUMO

Invaginating synapses in the basal amygdala are a unique type of GABAergic synapses equipped with molecular-anatomical organization specialized for 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling. Cholecystokinin (CCK)-positive basket cell terminals protrude into pyramidal cell somata and form invaginating synapses, where apposing presynaptic and postsynaptic elements are highly loaded with cannabinoid receptor CB1 or 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα), respectively. The present study scrutinized their neurochemical and neuroanatomical phenotypes in adult mouse telencephalon. In the basal amygdala, vesicular glutamate transporter-3 (VGluT3) was transcribed in one-fourth of CB1-expressing GABAergic interneurons. The majority of VGluT3-positive CB1-expressing basket cell terminals apposed DGLα clusters, whereas the majority of VGluT3-negative ones did not. Importantly, VGluT3-positive basket cell terminals selectively constructed invaginating synapses. GABAA receptors accumulated on the postsynaptic membrane of invaginating synapses, whereas metabotropic glutamate receptor-5 (mGluR5) was widely distributed on the somatodendritic surface of pyramidal cells. Moreover, CCK2 receptor (CCK2R) was highly transcribed in pyramidal cells. In cortical regions, pyramidal cells equipped with such VGluT3/CB1/DGLα-accumulated invaginating synapses were found at variable frequencies depending on the subregions. Therefore, in addition to extreme proximity of CB1- and DGLα-loaded presynaptic and postsynaptic elements, tripartite transmitter phenotype of GABA/glutamate/CCK is the common neurochemical feature of invaginating synapses, suggesting that glutamate, CCK, or both can promote 2-AG synthesis through activating Gαq/11 protein-coupled mGluR5 and CCK2R. These molecular configurations led us to hypothesize that invaginating synapses might be evolved to provide some specific mechanisms of induction, regulation, and cooperativity for 2-AG-mediated retrograde signaling in particular cortical and cortex-like amygdaloid regions.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Tonsila do Cerebelo/citologia , Córtex Cerebral/citologia , Colecistocinina/metabolismo , Endocanabinoides/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/ultraestrutura , Animais , Colecistocinina/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Neurônios/ultraestrutura , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/metabolismo , Transdução de Sinais/genética , Sinapses/ultraestrutura
9.
J Neurosci ; 34(22): 7412-24, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24872547

RESUMO

Of the two members of the δ subfamily of ionotropic glutamate receptors, GluD2 is exclusively expressed at parallel fiber-Purkinje cell (PF-PC) synapses in the cerebellum and regulates their structural and functional connectivity. However, little is known to date regarding cellular and synaptic expression of GluD1 and its role in synaptic circuit formation. In the present study, we investigated this issue by producing specific and sensitive histochemical probes for GluD1 and analyzing cerebellar synaptic circuits in GluD1-knock-out mice. GluD1 was widely expressed in the adult mouse brain, with high levels in higher brain regions, including the cerebral cortex, striatum, limbic regions (hippocampus, nucleus accumbens, lateral septum, bed nucleus stria terminalis, lateral habenula, and central nucleus of the amygdala), and cerebellar cortex. In the cerebellar cortex, GluD1 mRNA was expressed at the highest level in molecular layer interneurons and its immunoreactivity was concentrated at PF synapses on interneuron somata. In GluD1-knock-out mice, the density of PF synapses on interneuron somata was significantly reduced and the size and number of interneurons were significantly diminished. Therefore, GluD1 is common to GluD2 in expression at PF synapses, but distinct from GluD2 in neuronal expression in the cerebellar cortex; that is, GluD1 in interneurons and GluD2 in PCs. Furthermore, GluD1 regulates the connectivity of PF-interneuron synapses and promotes the differentiation and/or survival of molecular layer interneurons. These results suggest that GluD1 works in concert with GluD2 for the construction of cerebellar synaptic wiring through distinct neuronal and synaptic expressions and also their shared synapse-connecting function.


Assuntos
Química Encefálica/fisiologia , Cerebelo/fisiologia , Regulação da Expressão Gênica/fisiologia , Interneurônios/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Receptores de Glutamato/biossíntese , Sinapses/fisiologia , Animais , Diferenciação Celular/fisiologia , Cerebelo/ultraestrutura , Glutamato Desidrogenase , Células HEK293 , Humanos , Interneurônios/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Nervosas Mielinizadas/ultraestrutura , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Receptores de Glutamato/genética , Receptores de Glutamato/fisiologia , Sinapses/ultraestrutura
10.
Histochem Cell Biol ; 143(3): 301-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25249350

RESUMO

Information concerning the cellular localization of cholecystokinin (CCK)-1 receptors has been discrepant and remained scanty at ultrastructural levels. The present immunohistochemical study at light and electron microscopic levels revealed the distinct localization of CCK1 receptors in visceral organs. Immunohistochemistry by use of a purified antibody against mouse CCK1 receptor was applied to fixed tissue sections of the pancreas, gallbladder, stomach, and intestine of mice. A silver-intensified immunogold method revealed the subcellular localization under electron microscope. The immunoreactivity for CCK1 receptors was selectively found in the basolateral membrane of pancreatic acinar cells and gastric chief cells but was absent in pancreatic islets and gastric D cells. Another intense expression in the gut was seen in the myenteric nerve plexus of the antro-duodenal region and some populations of c-Kit-expressing pacemaker cells in the duodenal musculature. The gallbladder contained smooth muscle fibers with an intense immunoreactivity of CCK1 receptors on cell surfaces. The restricted localization of CCK1 receptors on the basolateral membrane of pancreatic acinar cells and gastric chief cells, along with their absence in the islets of Langerhans and gastric D cells, provides definitive information concerning the regulatory mechanism by circulating CCK. Especially, the subcellular localization in the acinar cells completes the investigation for the detection of circulating CCK by the basolateral membrane.


Assuntos
Vesícula Biliar/citologia , Pâncreas/citologia , Receptor de Colecistocinina A/análise , Receptor de Colecistocinina A/metabolismo , Estômago/citologia , Animais , Vesícula Biliar/ultraestrutura , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos , Microscopia Eletrônica , Dados de Sequência Molecular , Pâncreas/ultraestrutura , Receptor de Colecistocinina A/ultraestrutura , Estômago/ultraestrutura
11.
Cerebellum ; 14(1): 4-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25338972

RESUMO

Neurons form exuberant synapses with target cells early in development. Then, necessary synapses are selectively strengthened whereas unnecessary connections are weakened and eventually eliminated during postnatal development. This process is known as synapse elimination and is a crucial step for shaping immature neural circuits into functionally mature versions. Accumulating evidence suggests that retrograde signaling from postsynaptic cells regulates synapse elimination, but the underlying mechanisms remain unknown. Here, we show that semaphorin3A (Sema3A) and semaphorin7A (Sema7A) mediate retrograde signals for elimination of redundant climbing fiber (CF) to Purkinje cell (PC) synapses in the developing cerebellum, a representative model of synapse elimination in the central nervous system. We picked up candidate retrograde signaling molecules that are expressed in PCs during the period of CF synapse elimination and the receptors of these candidate molecules that are present in CFs. We then assessed the effects of lentivirus-mediated RNAi-knockdown of these molecules on CF synapse elimination. By this systematic screening, we found that knockdown of Sema3A in PCs or its co-receptor, plexinA4 (PlxnA4), in CFs accelerated CF synapse elimination and decreased CF-mediated synaptic inputs. Conversely, knockdown of Sema7A in PCs or either of the two receptors for Sema7A, plexinC1 (PlxnC1) and integrinB1 (ItgB1), in CFs impaired CF synapse elimination. Importantly, the effect of Sema7A involves signaling by type 1 metabotropic glutamate receptor (mGluR1), a canonical pathway in PCs for the final stage of CF synapse elimination. These results demonstrate that specific semaphorins act as retrograde signaling molecules and regulate distinct processes of CF synapse elimination during postnatal cerebellar development.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia , Animais , Transdução de Sinais/fisiologia
12.
Proc Natl Acad Sci U S A ; 109(30): 12195-200, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22783023

RESUMO

The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic suppression. Although the mechanisms of 2-AG production are well characterized, how 2-AG is degraded is less clearly understood. Here we found that expression of the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MGL) was highly heterogeneous in the cerebellum, being rich within parallel fiber (PF) terminals, weak in Bergman glia (BG), and absent in other synaptic terminals. Despite this highly selective MGL expression pattern, 2-AG-mediated retrograde suppression was significantly prolonged at not only PF-Purkinje cell (PC) synapses but also climbing fiber-PC synapses in granule cell-specific MGL knockout (MGL-KO) mice whose cerebellar MGL expression was confined to the BG. Virus-mediated expression of MGL into the BG of global MGL-KO mice significantly shortened 2-AG-mediated retrograde suppression at PF-PC synapses. Furthermore, contribution of MGL to termination of 2-AG signaling depended on the distance from MGL-rich PFs to inhibitory synaptic terminals. Thus, 2-AG is degraded in a synapse-type independent manner by MGL present in PFs and the BG. The results of the present study strongly suggest that MGL regulates 2-AG signaling rather broadly within a certain range of neural tissue, although MGL expression is heterogeneous and limited to a subset of nerve terminals and astrocytes.


Assuntos
Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Glicerídeos/metabolismo , Monoacilglicerol Lipases/metabolismo , Proteólise , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Cálcio/metabolismo , Clonagem Molecular , Primers do DNA/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/genética , Neuroglia/metabolismo , Reação em Cadeia da Polimerase , Células de Purkinje/metabolismo
13.
Eur J Neurosci ; 40(5): 2797-810, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24905082

RESUMO

Slc4a10 was originally identified as a Na(+) -driven Cl(-) /HCO3 (-) exchanger NCBE that transports extracellular Na(+) and HCO3 (-) in exchange for intracellular Cl(-) , whereas other studies argue against a Cl(-) -dependence for Na(+) -HCO3 (-) transport, and thus named it the electroneutral Na(+) /HCO3 (-) cotransporter NBCn2. Here we investigated Slc4a10 expression in adult mouse brains by in situ hybridization and immunohistochemistry. Slc4a10 mRNA was widely expressed, with higher levels in pyramidal cells in the hippocampus and cerebral cortex, parvalbumin-positive interneurons in the hippocampus, and Purkinje cells (PCs) in the cerebellum. Immunohistochemistry revealed an uneven distribution of Slc4a10 within the somatodendritic compartment of cerebellar neurons. In the cerebellar molecular layer, stellate cells and their innervation targets (i.e. PC dendrites in the superficial molecular layer) showed significantly higher labeling than basket cells and their targets (PC dendrites in the basal molecular layer and PC somata). Moreover, the distal dendritic trees of PCs (i.e. parallel fiber-targeted dendrites) had significantly greater labeling than the proximal dendrites (climbing fiber-targeted dendrites). These observations suggest that Slc4a10 expression is regulated in neuron type- and input pathway-dependent manners. Because such an elaborate regulation is also found for K(+) -Cl(-) cotransporter KCC2, a major neuronal Cl(-) extruder, we compared their expression. Slc4a10 and KCC2 overlapped in most somatodendritic elements. However, relative abundance was largely complementary in the cerebellar cortex, with particular enrichments of Slc4a10 in PC dendrites and KCC2 in molecular layer interneurons, granule cells and PC somata. These properties might reflect functional redundancy and distinction of these transporters, and their differential requirements by individual neurons and respective input domains.


Assuntos
Encéfalo/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Neurônios/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores/metabolismo , Animais , Western Blotting , Encéfalo/citologia , Dendritos/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Parvalbuminas/metabolismo , RNA Mensageiro , Cotransportadores de K e Cl-
14.
Eur J Neurosci ; 39(11): 1796-809, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24580812

RESUMO

Activation of mu-opioid receptor (MOR) disinhibits dopaminergic neurons in the ventral tegmental area (VTA) through inhibition of γ-aminobutyric acid (GABA)ergic neurons. This mechanism is thought to play a pivotal role in mediating reward behaviors. Here, we characterised VTA-projecting enkephalinergic neurons in the anterior division of the bed nucleus of the stria terminalis (BST) and investigated their targets by examining MOR expression in the VTA. In the BST, neurons expressing preproenkephalin mRNA were exclusively GABAergic, and constituted 37.2% of the total GABAergic neurons. Using retrograde tracer injected into the VTA, 21.6% of VTA-projecting BST neurons were shown to express preproenkephalin mRNA. Enkephalinergic projections from the BST exclusively formed symmetrical synapses onto the dendrites of VTA neurons. In the VTA, 74.1% of MOR mRNA-expressing neurons were GABAergic, with the rest being glutamatergic neurons expressing type-2 vesicular glutamate transporter mRNA. However, MOR mRNA was below the detection threshold in dopaminergic neurons. By immunohistochemistry, MOR was highly expressed on the extrasynaptic membranes of dendrites in GABAergic VTA neurons, including dendrites innervated by BST-VTA projection terminals. MOR was also expressed weakly on GABAergic and glutamatergic terminals in the VTA. Given that GABAA α1 is expressed at GABAergic BST-VTA synapses on dendrites of GABAergic neurons [T. Kudo et al. (2012) J. Neurosci., 32, 18035-18046], our results collectively indicate that the BST sends dual inhibitory outputs targeting GABAergic VTA neurons; GABAergic inhibition via 'wired' transmission, and enkephalinergic inhibition via 'volume' transmission. This dual inhibitory system provides the neural substrate underlying the potent disinhibitory control over dopaminergic VTA neurons exerted by the BST.


Assuntos
Encefalinas/metabolismo , Neurônios GABAérgicos/metabolismo , Precursores de Proteínas/metabolismo , Núcleos Septais/metabolismo , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Dendritos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Encefalinas/genética , Neurônios GABAérgicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Neurópilo/metabolismo , Precursores de Proteínas/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Núcleos Septais/citologia , Núcleos Septais/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(7): 3059-64, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282604

RESUMO

2-Arachidonoylglycerol (2-AG) is the endocannabinoid that mediates retrograde suppression of synaptic transmission in the brain. 2-AG is synthesized in activated postsynaptic neurons by sn-1-specific diacylglycerol lipase (DGL), binds to presynaptic cannabinoid CB(1) receptors, suppresses neurotransmitter release, and is degraded mainly by monoacylglycerol lipase (MGL). In the basolateral amygdala complex, it has been demonstrated that CB(1) is particularly enriched in axon terminals of cholecystokinin (CCK)-positive GABAergic interneurons, induces short- and long-term depression at inhibitory synapses, and is involved in extinction of fear memory. Here, we clarified a unique molecular convergence of DGLα, CB(1), and MGL at specific inhibitory synapses in the basal nucleus (BA), but not lateral nucleus, of the basolateral amygdala. The synapses, termed invaginating synapses, consisted of conventional symmetrical contact and unique perisynaptic invagination of nerve terminals into perikarya. At invaginating synapses, DGLα was preferentially recruited to concave somatic membrane of postsynaptic pyramidal neurons, whereas invaginating presynaptic terminals highly expressed CB(1), MGL, and CCK. No such molecular convergence was seen for flat perisomatic synapses made by parvalbumin-positive interneurons. On the other hand, DGLα and CB(1) were expressed weakly at axospinous excitatory synapses. Consistent with these morphological data, thresholds for DGLα-mediated depolarization-induced retrograde suppression were much lower for inhibitory synapses than for excitatory synapses in BA pyramidal neurons. Moreover, depolarization-induced suppression was readily saturated for inhibition, but never for excitation. These findings suggest that perisomatic inhibition by invaginating synapses is a key target of 2-AG-mediated control of the excitability of BA pyramidal neurons.


Assuntos
Tonsila do Cerebelo/citologia , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Inibição Neural/fisiologia , Tratos Piramidais/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Ácidos Araquidônicos/metabolismo , Colecistocinina/metabolismo , Eletrofisiologia , Glicerídeos/metabolismo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Microscopia Imunoeletrônica , Monoacilglicerol Lipases/metabolismo , Sinapses/fisiologia
16.
J Neurosci ; 32(27): 9438-48, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22764252

RESUMO

The axon initial segment (AIS) of cerebellar Purkinje cells (PCs) is embraced by ramified axons of GABAergic basket cells (BCs) called the pinceau formation. This unique structure has been assumed to be a device for the modulation of PC outputs through electrical and/or GABAergic inhibition. Electrical inhibition is supported by enriched potassium channels, absence of sodium channels, and developed septate-like junctions between BC axons. The neurochemical basis for GABAergic inhibition, however, has not been well investigated. Here we addressed this issue using C56BL/6 mice. First, we confirmed previous observations that typical synaptic contacts were rare and confined to proximal axonal portions, with the remaining portions being mostly covered by astrocytic processes. Then we examined the expression of molecules involved in GABAergic signaling, including GABA synthetic enzyme glutamic acid decarboxylase (GAD), vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT), cytomatrix active zone protein bassoon, GABA receptor GABA(A)Rα1, and cell adhesion molecule neuroligin-2. These molecules were recruited to form a functional assembly at perisomatic BC-PC synapses and along the AIS of hippocampal and neocortical pyramidal cells. GAD and VIAAT immunogold labeling was five times lower in the pinceau formation compared with perisomatic BC terminals and showed no accumulation toward the AIS. Moreover, bassoon, neuroligin-2, and GABA(A)Rα1 formed no detectable clusters along the ankyrin-G-positive AIS proper. These findings indicate that GABAergic signaling machinery is organized loosely and even incompletely in the pinceau formation. Together, BCs do not appear to exert GABAergic synaptic inhibition on the AIS, although the mode of action of the pinceau formation remains to be explored.


Assuntos
Axônios/metabolismo , Córtex Cerebelar/metabolismo , Inibição Neural/fisiologia , Células de Purkinje/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/fisiologia , Animais , Córtex Cerebelar/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
J Neurosci ; 32(50): 18035-46, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23238719

RESUMO

Dopaminergic (DAergic) neurons in the ventral tegmental area (VTA) play crucial roles in motivational control of behaviors, and their activity is regulated directly or indirectly via GABAergic neurons by extrinsic afferents from various sources, including the bed nucleus of the stria terminalis (BST). Here, the neurochemical composition of VTA-projecting BST neurons and their outputs to the VTA were studied in adult mouse brains. By combining retrograde tracing with fluorescence in situ hybridization for 67 kDa glutamate decarboxylase (GAD67) and vesicular glutamate transporters (VGluTs), VTA-targeting BST neurons were classified into GAD67-positive (GAD67(+))/VGluT3-negative (VGluT3(-)), GAD67(+)/VGluT3(+), and VGluT2(+) neurons, of which GAD67(+)/VGluT3(-) neurons constituted the majority (∼90%) of VTA-projecting BST neurons. GABAergic efferents from the BST formed symmetrical synapses on VTA neurons, which were mostly GABAergic neurons, and expressed GABA(A) receptor α1 subunit on their synaptic and extrasynaptic membranes. In the VTA, VGluT3 was detected in terminals expressing vesicular inhibitory amino acid transporter (VIAAT), plasmalemmal serotonin transporter, or neither. Of these, VIAAT(+)/VGluT3(+) terminals, which should include those from GAD67(+)/VGluT3(+) BST neurons, formed symmetrical synapses. When single axons from VGluT3(+) BST neurons were examined, almost all terminals were labeled for VIAAT, whereas VGluT3 was often absent from terminals with high VIAAT loads. VGluT2(+) terminals in the VTA exclusively formed asymmetrical synapses, which expressed AMPA receptors on postsynaptic membrane. Therefore, the major mode of the BST-VTA projection is GABAergic, and its activation is predicted to disinhibit VTA DAergic neurons. VGluT2(+) and VGluT3(+) BST neurons further supply additional projections, which may principally convey excitatory or inhibitory inputs, respectively, to the VTA.


Assuntos
Vias Neurais/citologia , Neurônios/citologia , Núcleos Septais/citologia , Área Tegmentar Ventral/citologia , Animais , Imunofluorescência , Neurônios GABAérgicos/química , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Técnicas de Introdução de Genes , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Vias Neurais/química , Vias Neurais/metabolismo , Neurônios/química , Neurônios/metabolismo , Núcleos Septais/química , Núcleos Septais/metabolismo , Área Tegmentar Ventral/química , Área Tegmentar Ventral/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
18.
J Neurosci ; 32(39): 13421-32, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23015433

RESUMO

The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.


Assuntos
Condicionamento Operante/fisiologia , Corpo Estriado/fisiologia , Discriminação Psicológica/fisiologia , Atividade Motora/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Animais Geneticamente Modificados , Biotina/análogos & derivados , Calbindina 2 , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Colina O-Acetiltransferase/metabolismo , Condicionamento Operante/efeitos dos fármacos , Corpo Estriado/citologia , Corpo Estriado/lesões , Dextranos , Neurônios Dopaminérgicos/efeitos dos fármacos , Encefalinas/genética , Encefalinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ácido Ibotênico/toxicidade , Imunotoxinas/toxicidade , Interneurônios/metabolismo , Masculino , Motivação/efeitos dos fármacos , Motivação/genética , Parvalbuminas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/metabolismo , Receptores de Interleucina-2/genética , Esquema de Reforço , Proteína G de Ligação ao Cálcio S100/metabolismo , Substância Negra/metabolismo , Taquicininas/genética , Taquicininas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
19.
J Biol Chem ; 287(15): 12050-9, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22337885

RESUMO

Tripartite motif (TRIM)-containing proteins, which are defined by the presence of a common domain structure composed of a RING finger, one or two B-box motifs and a coiled-coil motif, are involved in many biological processes including innate immunity, viral infection, carcinogenesis, and development. Here we show that TRIM67, which has a TRIM motif, an FN3 domain and a SPRY domain, is highly expressed in the cerebellum and that TRIM67 interacts with PRG-1 and 80K-H, which is involved in the Ras-mediated signaling pathway. Ectopic expression of TRIM67 results in degradation of endogenous 80K-H and attenuation of cell proliferation and enhances neuritogenesis in the neuroblastoma cell line N1E-115. Furthermore, morphological and biological changes caused by knockdown of 80K-H are similar to those observed by overexpression of TRIM67. These findings suggest that TRIM67 regulates Ras signaling via degradation of 80K-H, leading to neural differentiation including neuritogenesis.


Assuntos
Glucosidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuritos/fisiologia , Proteólise , Proteínas ras/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cerebelo/citologia , Cerebelo/metabolismo , Proteínas do Citoesqueleto , Regulação da Expressão Gênica , Glucosidases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Especificidade de Órgãos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoglicanas/metabolismo , Proteínas com Motivo Tripartido , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação , Proteínas de Transporte Vesicular/metabolismo
20.
Eur J Neurosci ; 37(4): 532-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23216656

RESUMO

Postnatal expression of the type 2 K(+) -Cl(-) cotransporter (KCC2) in neurons lowers the Cl(-) equilibrium potential to values that are more negative than the resting potential, thereby converting the action of Cl(-) -permeable GABA(A) and glycine receptors from excitatory to inhibitory. In the present study, we investigated the spatiotemporal expression of KCC2 in mouse cerebella, particularly focusing on Purkinje cells (PCs). First, we confirmed the fundamental expression profiles of KCC2 in the cerebellum, i.e. neuron-specific expression, somatodendritic distribution, and postnatal upregulation. We also found preferential recruitment to climbing fiber (CF) synapses during the second and third postnatal weeks, when perisomatic innervation in PCs switches from CFs to basket cell axons (BAs) and also when single winner CFs translocate from somata to dendrites. In parallel with this synaptic recruitment, the intracellular distribution shifted from a diffuse cytoplasmic to a predominantly cell surface pattern. In adult PCs, CF synapse-associated accumulation was obscured. Instead, significantly high expression was noted on the surface of PC dendrites in the superficial two-thirds of the molecular layer, in which stellate cells reside and project axons to innervate PC dendrites. Thus, the somatodendritic distribution in PCs is regulated in relation to particular inputs or input zones. During development, timed recruitment of KCC2 to CF synapses will augment inhibitory GABAergic actions by incoming BAs, promoting the CF-to-BA switchover in perisomatic PC innervation. In adulthood, enriched KCC2 expression at the stellate cell-targeting territory of PC dendrites might help in maintaining intracellular Cl(-) homeostasis and the polarity of GABA(A) receptor-mediated responses upon sustained activity of this interneuron.


Assuntos
Cerebelo/crescimento & desenvolvimento , Neurogênese/fisiologia , Células de Purkinje/metabolismo , Simportadores/metabolismo , Animais , Cerebelo/fisiologia , Cerebelo/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/metabolismo , Fibras Nervosas/ultraestrutura , Células de Purkinje/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA