Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36655427

RESUMO

The lateral diffusion of transmembrane proteins on plasma membranes is a fundamental process for various cellular functions. Diffusion properties specific for individual protein species have been extensively studied, but the common features among protein species are poorly understood. Here, we systematically studied the lateral diffusion of various transmembrane proteins in the lower eukaryote Dictyostelium discoideum cells using a hidden Markov model for single-molecule trajectories obtained experimentally. As common features, all membrane proteins that had from one to ten transmembrane regions adopted three free diffusion states with similar diffusion coefficients regardless of their structural variability. All protein species reduced their mobility similarly upon the inhibition of microtubule or actin cytoskeleton dynamics, or myosin II. The relationship between protein size and the diffusion coefficient was consistent with the Saffman-Delbrück model, meaning that membrane viscosity is a major determinant of lateral diffusion, but protein size is not. These protein species-independent properties of multistate free diffusion were explained simply and quantitatively by free diffusion on the three membrane regions with different viscosities, which is in sharp contrast to the complex diffusion behavior of transmembrane proteins in higher eukaryotes.


Assuntos
Dictyostelium , Dictyostelium/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Difusão , Membranas/metabolismo
2.
Genes Cells ; 29(5): 380-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454557

RESUMO

Left-right (LR) asymmetry is crucial for animal development, particularly in Drosophila where LR-asymmetric morphogenesis of organs hinges on cellular-level chirality, termed cell chirality. In this species, two class I myosins, Myosin1D (Myo1D), and Myosin1C (Myo1C), respectively determine dextral (wild type) and sinistral (mirror image) cell chirality. Previous studies demonstrated Myo1D's ability to propel F-actin in leftward circles during in vitro gliding assays, suggesting its mechanochemical role in defining dextral chirality. Conversely, Myo1C propels F-actin without exhibiting LR-directional preference in this assay, suggesting at other properties governing sinistral chirality. Given the interaction of Myo1D and Myo1C with the membrane, we hypothesized that differences in their membrane behaviors might be critical in dictating their dextral or sinistral activities. In this study, employing single-molecule imaging analyses, we investigated the dynamic behaviors of Myo1D and Myo1C on the plasma membrane. Our findings revealed that Myo1C exhibits a significantly greater proportion of slow-diffusing population compared to Myo1D. Importantly, this characteristic was contingent upon both head and tail domains of Myo1C. The distinct diffusion patterns of Myo1D and Myo1C did not exert mutual influence on each other. This divergence in membrane diffusion between Myo1D and Myo1C may be crucial for dictating cell and organ chirality.


Assuntos
Membrana Celular , Proteínas de Drosophila , Macrófagos , Miosina Tipo I , Animais , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Macrófagos/metabolismo , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Imagem Individual de Molécula , Drosophila/metabolismo
3.
Biochem Biophys Res Commun ; 704: 149673, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401305

RESUMO

Epidermal growth factor receptor (EGFR)-mediated signal transduction controls cell growth and proliferation. The signaling pathway is regulated so that it is activated only by external EGF stimuli, but the mechanisms that prevent EGF-independent spontaneous activation of EGFR-mediated signaling are unknown. Here we report cholesterol depletion activates EGFR-mediated signaling without EGF. We applied automated single-molecule imaging to EGFR and characterized the lateral diffusion and cluster formation on cholesterol-depleted and cholesterol-supplemented membranes. In cells in which cholesterol was depleted by methyl-ß-cyclodextrin (MßCD) treatment, EGFR exhibited a reduction in lateral diffusion, an acceleration of cluster formation, and autophosphorylation without EGF. Concurrently, extracellular signal-regulated kinase (ERK), which is regulated by EGFR-mediated signaling, exhibited phosphorylation and nuclear translocation without EGF. These cholesterol depletion-induced changes were similar, albeit less efficient, to those that occurred with EGF stimulation in normal cells without MßCD, indicating the spontaneous activation of EGFR signaling. The exogenous supplementation of cholesterol suppressed the MßCD-induced spontaneous activation of EGFR and ERK nuclear translocation. Single-molecule imaging of EGFR in a large number of cells revealed cell-to-cell heterogeneity, with a sub-population showing a high ability for spontaneous activation. These results provide evidence that EGFR-mediated signaling is properly regulated by cholesterol metabolism to prevent uncontrolled spontaneous activation.


Assuntos
Fator de Crescimento Epidérmico , Transdução de Sinais , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fosforilação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Colesterol/metabolismo
4.
J Infect Chemother ; 30(2): 141-146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797822

RESUMO

INTRODUCTION: The development of pneumocystis pneumonia (PCP) has recently become a growing concern; thus, its prevention has become increasingly important. Sulfamethoxazole-trimethoprim (ST) is a cost-effective first-line and prophylactic treatment for PCP. However, ST administration criteria for PCP prophylaxis remain unclear and are often discontinued because of adverse events (AEs). In this study, we aimed to investigate the causes of ST discontinuation and the associated AEs using objective data. METHODS: We retrospectively analyzed the data of 162 patients admitted to Kansai Medical University Hospital between January 2018 and December 2020, who received ST for PCP prophylaxis. We compared clinical characteristics, laboratory data, and incidence of AEs between ST non-discontinuation and ST discontinuation groups. Additionally, we divided the patients into non-developing and developing thrombocytopenia (≥ Grade 1) groups based on the investigation results. RESULTS: No patients developed PCP while receiving ST. The most common causes of ST discontinuation were thrombocytopenia (37%), liver dysfunction (20%), and rash (18%). Multivariate analysis revealed thrombocytopenia (≥ Grade 1) as a factor significantly associated with ST discontinuation. Furthermore, we identified three factors correlated with thrombocytopenia (≥ Grade 1): age ≥50 years, lymphocyte count <1000/µL, and platelet count <180,000/µL. CONCLUSIONS: Patients with the aforementioned factors are at higher risk of developing thrombocytopenia (≥ Grade 1) during ST administration for PCP prophylaxis. Therefore, platelet count monitoring is essential to enhance safety and efficacy of ST treatment. Nonetheless, further research is warranted to explore additional implications and interventions.


Assuntos
Pneumonia por Pneumocystis , Trombocitopenia , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Pneumonia por Pneumocystis/epidemiologia , Pneumonia por Pneumocystis/prevenção & controle , Pneumonia por Pneumocystis/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/efeitos adversos , Trombocitopenia/tratamento farmacológico
5.
Cell Struct Funct ; 48(2): 145-160, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37438131

RESUMO

In eukaryotic motile cells, the active Ras (Ras-GTP)-enriched domain is generated in an asymmetric manner on the cell membrane through the excitable dynamics of an intracellular signaling network. This asymmetric Ras signaling regulates pseudopod formation for both spontaneous random migration and chemoattractant-induced directional migration. While membrane lipids, such as sphingomyelin and phosphatidylserine, contribute to Ras signaling in various cell types, whether they are involved in the Ras excitability for cell motility is unknown. Here we report that functional Ras excitability requires the normal metabolism of sphingomyelin for efficient cell motility and chemotaxis. The pharmacological blockade of sphingomyelin metabolism by an acid-sphingomyelinase inhibitor, fendiline, and other inhibitors suppressed the excitable generation of the stable Ras-GTP-enriched domain. The suppressed excitability failed to invoke enough basal motility to achieve directed migration under shallow chemoattractant gradients. The fendiline-induced defects in Ras excitability, motility and stimulation-elicited directionality were due to an accumulation of sphingomyelin on the membrane, which could be recovered by exogenous sphingomyelinase or phosphatidylserine without changing the expression of Ras. These results indicate a novel regulatory mechanism of the excitable system by membrane lipids, in which sphingomyelin metabolism provides a membrane environment to ensure Ras excitation for efficient cellular motility and chemotaxis.Key words: cell polarity, cell migration, Ras, excitability, sphingomyelin.


Assuntos
Quimiotaxia , Esfingomielinas , Quimiotaxia/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Fosfatidilserinas , Fendilina , Movimento Celular , Fatores Quimiotáticos , Guanosina Trifosfato
6.
J Biol Chem ; 298(3): 101630, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085554

RESUMO

Cancer invasion and metastasis are the major causes of cancer patient mortality. Various growth factors, including hepatocyte growth factor (HGF), are known to promote cancer invasion and metastasis, but the regulatory mechanisms involved are not fully understood. Here, we show that HGF-promoted migration and invasion of breast cancer cells are regulated by CUB domain-containing protein 1 (CDCP1), a transmembrane activator of SRC kinase. In metastatic human breast cancer cell line MDA-MB-231, which highly expresses the HGF receptor MET and CDCP1, we show that CDCP1 knockdown attenuated HGF-induced MET activation, followed by suppression of lamellipodia formation and cell migration/invasion. In contrast, in the low invasive/nonmetastatic breast cancer cell line T47D, which had no detectable MET and CDCP1 expression, ectopic MET expression stimulated the HGF-dependent activation of invasive activity, and concomitant CDCP1 expression activated SRC and further promoted invasive activity. In these cells, CDCP1 expression dramatically activated HGF-induced membrane remodeling, which was accompanied by activation of the small GTPase Rac1. Analysis of guanine nucleotide exchange factors revealed that ARHGEF7 was specifically required for CDCP1-dependent induction of HGF-induced invasive ability. Furthermore, immunofluorescence staining demonstrated that CDCP1 coaccumulated with ARHGEF7. Finally, we confirmed that the CDCP1-SRC axis was also crucial for HGF and ARHGEF7-RAC1 signaling in MDA-MB-231 cells. Altogether, these results demonstrate that the CDCP1-SRC-ARHGEF7-RAC1 pathway plays an important role in the HGF-induced invasion of a subset of breast cancer cells.


Assuntos
Antígenos de Neoplasias , Neoplasias da Mama , Fator de Crescimento de Hepatócito , Fatores de Troca de Nucleotídeo Guanina Rho , Quinases da Família src , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Quinases da Família src/genética , Quinases da Família src/metabolismo
7.
Org Biomol Chem ; 20(2): 387-395, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34908079

RESUMO

In this study we self-assembled the four-armed porphyrin hetero dimer capsule Cap4, stabilized through amidinium-carboxylate salt bridges, in CH2Cl2 and CHCl3. The dimer capsule Cap4 was kinetically and thermodynamically more stable than the corresponding two-armed dimer Cap2. The number of arms strongly influenced their recognition behaviour; guests possessing small aromatic faces (e.g., 1,3,5-trinitrobenzene) preferred residing in the cavity of the two-armed capsule Cap2, rather than in Cap4, both thermodynamically and kinetically; in contrast, large aromatic guests (e.g., 9,10-dibromoanthracene) were encapsulated predominantly by Cap4 because of favourable entropic effects. The number of arms enabled self-sorting behaviour of the dimer formation; complexation studies using an equimolar mixture of the four porphyrin constituents of the two capsules revealed the quantitative formation of the corresponding dimers Cap2 and Cap4. Furthermore, we examined the specific molecular recognition of Cap2 and Cap4; NMR experiments of mixtures of Cap2 and Cap4 in the presence of favourable guests for Cap2 and Cap4 revealed that these guest molecules were encapsulated selectively by their preferred hosts.

8.
Chem Pharm Bull (Tokyo) ; 70(4): 293-299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370207

RESUMO

We designed and synthesized non-peptide organic molecular ligands for integrin αvß3. Candidate ligands featured amidino analog and carboxy groups as binding sites on either side of a spacer, which consisted of benzophenone or an analog, such as diphenyl sulfide, diphenyl sulfoxide, diphenyl sulfone, or diphenyl ether. Competitive binding assays to integrin αvß3 with respect to [125I]echistatin were used to determine inhibitory activity of the synthetic ligands. Ligands bearing 2-aminobenzimidazoyl and glycyl groups separated by a benzophenone spacer demonstrated more potent binding than did a linear Arg-Gly-Asp (RGD) tripeptide that represents the native integrin αvß3 binding motif. Ligands possessing 2-aminobenzimidazoyl and carboxy groups and diphenyl sulfoxide or diphenyl ether spacers inhibited binding of [125I]echistatin with IC50 values similar to that of the linear RGD tripeptide.


Assuntos
Integrina alfaVbeta3 , Sequência de Aminoácidos , Sítios de Ligação , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Ligantes , Peso Molecular
9.
J Cell Sci ; 132(5)2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30745337

RESUMO

Spontaneous cell movement is underpinned by an asymmetric distribution of signaling molecules including small G proteins and phosphoinositides on the cell membrane. However, the molecular network necessary for spontaneous symmetry breaking has not been fully elucidated. Here, we report that, in Dictyostelium discoideum, the spatiotemporal dynamics of GTP bound Ras (Ras-GTP) breaks the symmetry due its intrinsic excitability even in the absence of extracellular spatial cues and downstream signaling activities. A stochastic excitation of local and transient Ras activation induced phosphatidylinositol (3,4,5)-trisphosphate (PIP3) accumulation via direct interaction with Phosphoinositide 3-kinase (PI3K), causing tightly coupled traveling waves that propagated along the membrane. Comprehensive phase analysis of the waves of Ras-GTP and PIP3 metabolism-related molecules revealed the network structure of the excitable system including positive-feedback regulation of Ras-GTP by the downstream PIP3. A mathematical model reconstituted a series of the observed symmetry-breaking phenomena, illustrating the essential involvement of Ras excitability in the cellular decision-making process.


Assuntos
Membrana Celular/metabolismo , Dictyostelium/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas ras/metabolismo , Movimento Celular , Células Cultivadas , Retroalimentação Fisiológica , Guanosina Trifosfato/metabolismo , Modelos Teóricos , Organismos Geneticamente Modificados , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Receptor Cross-Talk , Transdução de Sinais , Proteínas ras/genética
10.
Biochem Biophys Res Commun ; 554: 131-137, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33784508

RESUMO

The chemotaxis of Dictysotelium discoideum cells in response to a chemical gradient of cyclic adenosine 3',5'-monophosphate (cAMP) was studied using a newly designed microfluidic device. The device consists of 800 cell-sized channels in parallel, each 4 µm wide, 5 µm high, and 100 µm long, allowing us to prepare the same chemical gradient in all channels and observe the motility of 500-1000 individual cells simultaneously. The percentage of cells that exhibited directed migration was determined for various cAMP concentrations ranging from 0.1 pM to 10 µM. The results show that chemotaxis was highest at 100 nM cAMP, consistent with previous observations. At concentrations as low as 10 pM, about 16% of cells still exhibited chemotaxis, suggesting that the receptor occupancy of only 6 cAMP molecules/cell can induce chemotaxis in very sensitive cells. At 100 pM cAMP, chemotaxis was suppressed due to the self-production and secretion of intracellular cAMP induced by extracellular cAMP. Overall, systematic observations of a large number of individual cells under the same chemical gradients revealed the heterogeneity of chemotaxis responses in a genetically homogeneous cell population, especially the existence of a sub-population with extremely high sensitivity for chemotaxis.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/farmacologia , Dictyostelium/fisiologia , Dictyostelium/efeitos dos fármacos , Microfluídica/métodos , Análise de Célula Única/métodos
11.
Genes Cells ; 25(5): 312-326, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32125743

RESUMO

Multicellular organisms contain various differentiated cells. Fate determination of these cells remains a fundamental issue. The cellular slime mold Dictyostelium discoideum is a useful model organism for studying differentiation; it proliferates as single cells in nutrient-rich conditions, which aggregate into a multicellular body upon starvation, subsequently differentiating into stalk cells or spores. The fates of these cells can be predicted in the vegetative phase: Cells expressing higher and lower levels of omt12 differentiate into stalk cells and spores, respectively. However, omt12 is merely a marker gene and changes in its expression do not influence the cell fate, and determinant factors remain unknown. In this study, we analyzed cell fate determinants in the stalk-destined and spore-destined cells that were sorted based on omt12 expression. Luciferase assay demonstrated higher levels of intracellular ATP in the stalk-destined cells than in the spore-destined cells. Live-cell observation during development using ATP sensor probes revealed that cells with higher ATP levels differentiated into stalk cells. Furthermore, reducing the ATP level by treating with an inhibitor of ATP production changed the differentiation fates of the stalk-destined cells to spores. These results suggest that intracellular ATP levels influence cell fates in D. discoideum differentiation.


Assuntos
Trifosfato de Adenosina/metabolismo , Diferenciação Celular , Dictyostelium/citologia , Movimento Celular , Dictyostelium/metabolismo
12.
Org Biomol Chem ; 19(21): 4775-4782, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33978050

RESUMO

Many hydrogen abstraction reactions on sp3 carbons with oxyradicals take place site-selectively (regioselectively). To investigate this selectivity, ab initio and density functional theory (DFT) calculations were carried out using cyclopentanone and SO4-˙ as the substrate and oxyradical, respectively. At the ωB97XD/6-311+G(d,p) level, the energy barriers for the forward process (ΔE1‡) of both α- and ß-hydrogen abstraction were predicted to be 54.6 and 50.9 kJ mol-1, respectively. Consideration of solvent effects (acetonitrile) decreased these energy barriers to 33.2 and 26.1 kJ mol-1, respectively. These calculation outcomes suggested that ß-hydrogen abstraction would be favourable, which supports experimental findings (i.e. ß-selective abstraction). At the ωB97XD level, investigations into hydrogen abstraction from cyclohexanone with SO4-˙ confirmed the regioselectivity observed experimentally. Hydrogen abstractions from 2-propylpyridine and 3-methyl-1-butanol using SO4-˙, which are unknown reactions, were also calculated using the DFT method, and the predicted regioselectivity was consistent with that in the known reactions using tetrabutylammonium decatungstate (TBADT). In addition, regioselectivities in unexplored hydrogen abstractions of cyclopentanone by several oxyradicals were predicted. Natural bond orbital (NBO) analysis carried out at the ωB97XD level indicated that the transferred hydrogen atom is partially positively charged when abstracted by an oxyradical. Interestingly, hydrogens bonded to the most positively charged carbon in the substrate were predominantly abstracted by oxyradicals in practice, which should be a simple compass for predicting regioselectivity in the functionalisation of C(sp3)-H bonds with oxyradicals.

13.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445178

RESUMO

TRPV1 and TRPV4, members of the transient receptor potential vanilloid family, are multimodal ion channels activated by various stimuli, including temperature and chemicals. It has been demonstrated that TRPV channels function as tetramers; however, the dynamics of the diffusion, oligomerization, and endocytosis of these channels in living cells are unclear. Here we undertook single-molecule time-lapse imaging of TRPV1 and TRPV4 in HEK 293 cells. Differences were observed between TRPV1 and TRPV4 before and after agonist stimulation. In the resting state, TRPV4 was more likely to form higher-order oligomers within immobile membrane domains than TRPV1. TRPV1 became immobile after capsaicin stimulation, followed by its gradual endocytosis. In contrast, TRPV4 was rapidly internalized upon stimulation with GSK1016790A. The selective loss of immobile higher-order oligomers from the cell surface through endocytosis increased the proportion of the fast-diffusing state for both subtypes. With the increase in the fast state, the association rate constants of TRPV1 and TRPV4 increased, regenerating the higher-order oligomers. Our results provide a possible mechanism for the different rates of endocytosis of TRPV1 and TRPV4 based on the spatial organization of the higher-order structures of the two TRPV channels.


Assuntos
Canais de Cátion TRPV/metabolismo , Difusão , Endocitose , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Imagem Individual de Molécula , Canais de Cátion TRPV/análise
14.
J Cell Sci ; 131(23)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30404836

RESUMO

In eukaryotic chemotaxis, parallel signaling pathways regulate the spatiotemporal pseudopod dynamics at the leading edge of a motile cell through the characteristic dynamics of an excitable system; however, differences in the excitability and the physiological roles of individual pathways remain to be elucidated. Here, we found that two different pathways, mediated by soluble guanylyl cyclase (sGC) and phosphoinositide 3-kinase (PI3K), caused similar all-or-none responses for sGC localization and phosphatidylinositol 3,4,5-trisphosphate production but with different refractory periods, by undertaking simultaneous observations of the excitable properties of the two pathways in Dictyostelium cells. Owing to the shorter refractory period, sGC signaling responded more frequently to chemoattractants, leading to pseudopod formation with higher frequency. sGC excitability was regulated negatively by its product cGMP and by cGMP-binding protein C (GbpC) through the suppression of F-actin polymerization, providing the underlying delayed negative-feedback mechanism for the cyclical pseudopod formation. These results suggest that parallel pathways respond to environmental cues on different timescales in order to mediate chemotactic motility in a manner based on their intrinsic excitability.


Assuntos
Eucariotos/metabolismo , Animais , Quimiotaxia/fisiologia , Transdução de Sinais
15.
Biochem Biophys Res Commun ; 525(2): 372-377, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32098673

RESUMO

Collective cell migration is a key process during the development of multicellular organisms, in which the migrations of individual cells are coordinated through chemical guidance and physical contact between cells. Talin has been implicated in mechanical linkage between actin-based motile machinery and adhesion molecules, but how talin contributes to collective cell migration is unclear. Here we show that talin B is involved in chemical coordination between cells for collective cell migration at the multicellular mound stage in the development of Dictyostelium discoideum. From early aggregation to the mound formation, talB-null cells exhibited collective migration normally with cAMP relay. Subsequently, talB-null cells showed developmental arrest at the mound stage, and at the same time, they had impaired collective migration and cAMP relay, while wild-type cells exhibited rotational cell migration continuously in concert with cAMP relay during the mound stage. Genetic suppression of PI3K activity partially restored talB-null phenotypes in collective cell migration and cAMP relay. Overall, our observations suggest that talin B regulates chemical coordination via PI3K-mediated signaling in a stage-specific manner for the multicellular development of Dictyostelium cells.


Assuntos
Movimento Celular , Dictyostelium/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Talina/fisiologia , Agregação Celular , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Proteínas de Protozoários
16.
Chem Pharm Bull (Tokyo) ; 68(12): 1226-1232, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028801

RESUMO

Proteins incorporating artificial moieties such as fluorophores and drugs have enjoyed increasing use in chemical biology and drug development research. Preparation of such artificial protein derivatives has relied mainly on native chemical ligation in which peptide/protein thioesters chemoselectively react with N-terminal cysteine (Cys) peptides to afford protein molecules. The protein thioesters derived from expressed proteins represent thioesters that are very useful for the preparation of artificial proteins by native chemical ligation with synthetic peptides with N-terminal Cys. We recently have developed a traceless thioester-producing protocol using carboxypeptidase Y (CPaseY) which is compatible with an expressed protein. The traceless character is ensured by CPaseY-mediated hydrazinolysis of C-terminal Xaa (X)-Cys-proline (Pro)-leucine (Leu)-OH sequence followed by an auto-processing of the Cys-Pro (CP) dipeptide unit, affording the corresponding X-thioester (X-SR). However, hydrazinolysis of the amide bond in the prolyl leucine junction depends significantly on the nature of X. In the case of hydrophobic X residues, the hydrazinolysis overreacts to give several hydrazides while the reaction of hydrophilic X residues proceeds slowly. In this research, we attempted to develop an X-independent CPaseY-mediated protocol and found that the incorporation of a triple CP sequence into the C-terminal end (X-(CP)3-Leu-OH) allows for efficient X-SR formation in a manner that is independent of X.


Assuntos
Catepsina A/metabolismo , Hidrazinas/química , Peptídeos/química , Proteínas/química , Amidas/química , Sequência de Aminoácidos , Cisteína/química , Leucina/química , Prolina/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
17.
Proc Natl Acad Sci U S A ; 113(16): 4356-61, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044073

RESUMO

Chemotactic eukaryote cells can sense chemical gradients over a wide range of concentrations via heterotrimeric G-protein signaling; however, the underlying wide-range sensing mechanisms are only partially understood. Here we report that a novel regulator of G proteins, G protein-interacting protein 1 (Gip1), is essential for extending the chemotactic range ofDictyosteliumcells. Genetic disruption of Gip1 caused severe defects in gradient sensing and directed cell migration at high but not low concentrations of chemoattractant. Also, Gip1 was found to bind and sequester G proteins in cytosolic pools. Receptor activation induced G-protein translocation to the plasma membrane from the cytosol in a Gip1-dependent manner, causing a biased redistribution of G protein on the membrane along a chemoattractant gradient. These findings suggest that Gip1 regulates G-protein shuttling between the cytosol and the membrane to ensure the availability and biased redistribution of G protein on the membrane for receptor-mediated chemotactic signaling. This mechanism offers an explanation for the wide-range sensing seen in eukaryotic chemotaxis.


Assuntos
Membrana Celular/metabolismo , Quimiotaxia/fisiologia , Dictyostelium/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/genética , Dictyostelium/genética , Reguladores de Proteínas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética
18.
Biochem Biophys Res Commun ; 507(1-4): 304-310, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30454895

RESUMO

The wide range sensing of extracellular signals is a common feature of various sensory cells. Eukaryotic chemotactic cells driven by GPCRs and their cognate G proteins are one example. This system endows the cells directional motility towards their destination over long distances. There are several mechanisms to achieve the long dynamic range, including negative regulation of the receptors upon ligand interaction and spatial regulation of G proteins, as we found recently. However, these mechanisms are insufficient to explain the 105-fold range of chemotaxis seen in Dictyostelium. Here, we reveal that the receptor-mediated activation, recruitment, and capturing of G proteins mediate chemotactic signaling at the lower, middle and higher concentration ranges, respectively. These multiple mechanisms of G protein dynamics can successfully cover distinct ranges of ligand concentrations, resulting in seamless and broad chemotaxis. Furthermore, single-molecule imaging analysis showed that the activated Gα subunit forms an unconventional complex with the agonist-bound receptor. This complex formation of GPCR-Gα increased the membrane-binding time of individual Gα molecules and therefore resulted in the local accumulation of Gα. Our findings provide an additional chemotactic dynamic range mechanism in which multiple G protein dynamics positively contribute to the production of gradient information.


Assuntos
Quimiotaxia , Dictyostelium/citologia , Dictyostelium/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , AMP Cíclico/metabolismo , Espaço Intracelular/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais
19.
J Am Chem Soc ; 139(48): 17397-17404, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29119782

RESUMO

Single-molecule imaging (SMI) has been widely utilized to investigate biomolecular dynamics and protein-protein interactions in living cells. However, multicolor SMI of intracellular proteins is challenging because of high background signals and other limitations of current fluorescence labeling approaches. To achieve reproducible intracellular SMI, a labeling probe ensuring both efficient membrane permeability and minimal non-specific binding to cell components is essential. We developed near-infrared fluorescent probes for protein labeling that specifically bind to a mutant ß-lactamase tag. By structural fine-tuning of cell permeability and minimized non-specific binding, SiRcB4 enabled multicolor SMI in combination with a HaloTag-based red-fluorescent probe. Upon addition of both chemical probes at sub-nanomolar concentrations, single-molecule imaging revealed the dynamics of TLR4 and its adaptor protein, TIRAP, which are involved in the innate immune system. Statistical analysis of the quantitative properties and time-lapse changes in dynamics revealed a protein-protein interaction in response to ligand stimulation.


Assuntos
Cor , Corantes Fluorescentes/química , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Proteínas/análise , Proteínas/química , Imagem Individual de Molécula/métodos , Corantes Fluorescentes/análise , Ligantes , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/química , Sondas Moleculares/análise , Ligação Proteica , Receptores de Interleucina-1/análise , Receptores de Interleucina-1/química , Coloração e Rotulagem , Receptor 4 Toll-Like/análise , Receptor 4 Toll-Like/química , beta-Lactamases/análise , beta-Lactamases/química , beta-Lactamases/genética
20.
Biochem Biophys Res Commun ; 464(2): 459-66, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26143530

RESUMO

Integrin LFA-1 regulates immune cell adhesion and trafficking by binding to ICAM-1 upon chemokine stimulation. Integrin-mediated clutch formation between extracellular ICAM-1 and the intracellular actin cytoskeleton is important for cell adhesion. We applied single-molecule tracking analysis to LFA-1 and ICAM-1 in living cells to examine the ligand-binding kinetics and mobility of the molecular clutch under chemokine-induced physiological adhesion and Mn(2+)-induced tight adhesion. Our results show a transient LFA-1-mediated clutch formation that lasts a few seconds and leads to a transient lower-mobility is sufficient to promote cell adhesion. Stable clutch formation was observed for Mn(2+)-induced high affinity LFA-1, but was not required for physiological adhesion. We propose that fast cycling of the clutch formation by intermediate-affinity integrin enables dynamic cell adhesion and migration.


Assuntos
Adesão Celular/fisiologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Cinética , Antígeno-1 Associado à Função Linfocitária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA