Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(2): 313-328, 2014 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-24656405

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Piperidinas/farmacologia , Quinolinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Xenoenxertos , Humanos , Hidroxiquinolinas/farmacologia , MAP Quinase Quinase 4/metabolismo , Camundongos , Transplante de Neoplasias , Pinocitose/efeitos dos fármacos , Vacúolos/metabolismo , Peixe-Zebra
3.
Nucleic Acids Res ; 49(21): e125, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34534335

RESUMO

The majority of biopsies in both basic research and translational cancer studies are preserved in the format of archived formalin-fixed paraffin-embedded (FFPE) samples. Profiling histone modifications in archived FFPE tissues is critically important to understand gene regulation in human disease. The required input for current genome-wide histone modification profiling studies from FFPE samples is either 10-20 tissue sections or whole tissue blocks, which prevents better resolved analyses. But it is desirable to consume a minimal amount of FFPE tissue sections in the analysis as clinical tissues of interest are limited. Here, we present FFPE tissue with antibody-guided chromatin tagmentation with sequencing (FACT-seq), the first highly sensitive method to efficiently profile histone modifications in FFPE tissues by combining a novel fusion protein of hyperactive Tn5 transposase and protein A (T7-pA-Tn5) transposition and T7 in vitro transcription. FACT-seq generates high-quality chromatin profiles from different histone modifications with low number of FFPE nuclei. We proved a very small piece of FFPE tissue section containing ∼4000 nuclei is sufficient to decode H3K27ac modifications with FACT-seq. H3K27ac FACT-seq revealed disease-specific super enhancers in the archived FFPE human colorectal and human glioblastoma cancer tissue. In summary, FACT-seq allows decoding the histone modifications in archival FFPE tissues with high sensitivity and help researchers to better understand epigenetic regulation in cancer and human disease.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Histonas/análise , Animais , Linhagem Celular , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Proteína Estafilocócica A/metabolismo , Transposases/metabolismo
4.
Glia ; 68(6): 1228-1240, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868967

RESUMO

Glioblastoma (GBM) is the most frequent and deadly primary malignant brain tumor. Hallmarks are extensive intra-tumor and inter-tumor heterogeneity and highly invasive growth, which provide great challenges for treatment. Efficient therapy is lacking and the majority of patients survive less than 1 year from diagnosis. GBM progression and recurrence is caused by treatment-resistant glioblastoma stem cells (GSCs). GSC cultures are considered important models in target identification and drug screening studies. The current state-of-the-art method, to isolate and maintain GSC cultures that faithfully mimic the primary tumor, is to use serum-free (SF) media conditions developed for neural stem cells (NSCs). Here we have investigated the outcome of explanting 218 consecutively collected GBM patient samples under both SF and standard, serum-containing media conditions. The frequency of maintainable SF cultures (SFCs) was most successful, but for a subgroup of GBM specimens, a viable culture could only be established in serum-containing media, called exclusive serum culture (ESC). ESCs expressed nestin and SOX2, and displayed all functional characteristics of a GSC, that is, extended proliferation, sustained self-renewal and orthotopic tumor initiation. Once adapted to the in vitro milieu they were also sustainable in SF media. Molecular analyses showed that ESCs formed a discrete group that was most related to the mesenchymal GBM subtype. This distinct subgroup of GBM that would have evaded modeling in SF conditions only provide unique cell models of GBM inter-tumor heterogeneity.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/patologia , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Camundongos Transgênicos
5.
J Pathol ; 247(2): 228-240, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30357839

RESUMO

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor which lacks efficient treatment and predictive biomarkers. Expression of the epithelial stem cell marker Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been described in GBM, but its functional role has not been conclusively elucidated. Here, we have investigated the role of LGR5 in a large repository of patient-derived GBM stem cell (GSC) cultures. The consequences of LGR5 overexpression or depletion have been analyzed using in vitro and in vivo methods, which showed that, among those with highest LGR5 expression (LGR5high ), there were two phenotypically distinct groups: one that was dependent on LGR5 for its malignant properties and another that was unaffected by changes in LGR5 expression. The LGR5-responding cultures could be identified by their significantly higher self-renewal capacity as measured by extreme limiting dilution assay (ELDA), and these LGR5high -ELDAhigh cultures were also significantly more malignant and invasive compared to the LGR5high -ELDAlow cultures. This showed that LGR5 expression alone would not be a strict marker of LGR5 responsiveness. In a search for additional biomarkers, we identified LPAR4, CCND2, and OLIG2 that were significantly upregulated in LGR5-responsive GSC cultures, and we found that OLIG2 together with LGR5 were predictive of GSC radiation and drug response. Overall, we show that LGR5 regulates the malignant phenotype in a subset of patient-derived GSC cultures, which supports its potential as a predictive GBM biomarker. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular , Proliferação de Células , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Autorrenovação Celular , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fenótipo , Tolerância a Radiação , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Células Tumorais Cultivadas
6.
J Neurosci ; 34(44): 14644-51, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355217

RESUMO

Stem cells, believed to be the cellular origin of glioma, are able to generate gliomas, according to experimental studies. Here we investigated the potential and circumstances of more differentiated cells to generate glioma development. We and others have shown that oligodendrocyte precursor cells (OPCs) can also be the cell of origin for experimental oligodendroglial tumors. However, the question of whether OPCs have the capacity to initiate astrocytic gliomas remains unanswered. Astrocytic and oligodendroglial tumors represent the two most common groups of glioma and have been considered as distinct disease groups with putatively different origins. Here we show that mouse OPCs can give rise to both types of glioma given the right circumstances. We analyzed tumors induced by K-RAS and AKT and compared them to oligodendroglial platelet-derived growth factor B-induced tumors in Ctv-a mice with targeted deletions of Cdkn2a (p16(Ink4a-/-), p19(Arf-/-), Cdkn2a(-/-)). Our results showed that glioma can originate from OPCs through overexpression of K-RAS and AKT when combined with p19(Arf) loss, and these tumors displayed an astrocytic histology and high expression of astrocytic markers. We argue that OPCs have the potential to develop both astrocytic and oligodendroglial tumors given loss of p19(Arf), and that oncogenic signaling is dominant to cell of origin in determining glioma phenotype. Our mouse data are supported by the fact that human astrocytoma and oligodendroglioma display a high degree of overlap in global gene expression with no clear distinctions between the two diagnoses.


Assuntos
Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Células-Tronco Neurais/patologia , Oligodendroglia/patologia , Oligodendroglioma/patologia , Animais , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem da Célula , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Oligodendroglioma/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Vimentina/metabolismo
7.
Cell Death Dis ; 15(4): 273, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632238

RESUMO

Poor survival and lack of treatment response in glioblastoma (GBM) is attributed to the persistence of glioma stem cells (GSCs). To identify novel therapeutic approaches, we performed CRISPR/Cas9 knockout screens and discovered TGFß activated kinase (TAK1) as a selective survival factor in a significant fraction of GSCs. Loss of TAK1 kinase activity results in RIPK1-dependent apoptosis via Caspase-8/FADD complex activation, dependent on autocrine TNFα ligand production and constitutive TNFR signaling. We identify a transcriptional signature associated with immune activation and the mesenchymal GBM subtype to be a characteristic of cancer cells sensitive to TAK1 perturbation and employ this signature to accurately predict sensitivity to the TAK1 kinase inhibitor HS-276. In addition, exposure to pro-inflammatory cytokines IFNγ and TNFα can sensitize resistant GSCs to TAK1 inhibition. Our findings reveal dependency on TAK1 kinase activity as a novel vulnerability in immune-activated cancers, including mesenchymal GBMs that can be exploited therapeutically.


Assuntos
Apoptose , Glioblastoma , Glioma , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Apoptose/genética , Citocinas , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/genética , Glioma/imunologia , Glioma/metabolismo , Glioma/patologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa
8.
Neuro Oncol ; 25(1): 97-107, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35738865

RESUMO

BACKGROUND: Malignant gliomas, the most common malignant brain tumors in adults, represent a heterogeneous group of diseases with poor prognosis. Retroviruses can cause permanent genetic alterations that modify genes close to the viral integration site. METHODS: Here we describe the use of a high-throughput pipeline coupled to the commonly used tissue-specific retroviral RCAS-TVA mouse tumor model system. Utilizing next-generation sequencing, we show that retroviral integration sites can be reproducibly detected in malignant stem cell lines generated from RCAS-PDGFB-driven glioma biopsies. RESULTS: A large fraction of common integration sites contained genes that have been dysregulated or misexpressed in glioma. Others overlapped with loci identified in previous glioma-related forward genetic screens, but several novel putative cancer-causing genes were also found. Integrating retroviral tagging and clinical data, Ppfibp1 was highlighted as a frequently tagged novel glioma-causing gene. Retroviral integrations into the locus resulted in Ppfibp1 upregulation, and Ppfibp1-tagged cells generated tumors with shorter latency on orthotopic transplantation. In human gliomas, increased PPFIBP1 expression was significantly linked to poor prognosis and PDGF treatment resistance. CONCLUSIONS: Altogether, the current study has demonstrated a novel approach to tagging glioma genes via forward genetics, validating previous results, and identifying PPFIBP1 as a putative oncogene in gliomagenesis.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Estudos de Associação Genética , Glioma/patologia , Oncogenes , Proteínas Proto-Oncogênicas c-sis/genética
9.
Mol Oncol ; 17(2): 238-260, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495079

RESUMO

Glioblastoma (GBM) cancer stem cells (GSCs) contribute to GBM's origin, recurrence, and resistance to treatment. However, the understanding of how mRNA expression patterns of GBM subtypes are reflected at global proteome level in GSCs is limited. To characterize protein expression in GSCs, we performed in-depth proteogenomic analysis of patient-derived GSCs by RNA-sequencing and mass-spectrometry. We quantified > 10 000 proteins in two independent GSC panels and propose a GSC-associated proteomic signature characterizing two distinct phenotypic conditions; one defined by proteins upregulated in proneural and classical GSCs (GPC-like), and another by proteins upregulated in mesenchymal GSCs (GM-like). The GM-like protein set in GBM tissue was associated with necrosis, recurrence, and worse overall survival. Through proteogenomics, we discovered 252 non-canonical peptides in the GSCs, i.e., protein sequences that are variant or derive from genome regions previously considered non-protein-coding, including variants of the heterogeneous ribonucleoproteins implicated in RNA splicing. In summary, GSCs express two protein sets that have an inverse association with clinical outcomes in GBM. The discovery of non-canonical protein sequences questions existing gene models and pinpoints new protein targets for research in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Proteômica , Neoplasias Encefálicas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
10.
ACS Appl Bio Mater ; 6(9): 3790-3797, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37647213

RESUMO

There is an urgent need for simple and non-invasive identification of live neural stem/progenitor cells (NSPCs) in the developing and adult brain as well as in disease, such as in brain tumors, due to the potential clinical importance in prognosis, diagnosis, and treatment of diseases of the nervous system. Here, we report a luminescent conjugated oligothiophene (LCO), named p-HTMI, for non-invasive and non-amplified real-time detection of live human patient-derived glioblastoma (GBM) stem cell-like cells and NSPCs. While p-HTMI stained only a small fraction of other cell types investigated, the mere addition of p-HTMI to the cell culture resulted in efficient detection of NSPCs or GBM cells from rodents and humans within minutes. p-HTMI is functionalized with a methylated imidazole moiety resembling the side chain of histidine/histamine, and non-methylated analogues were not functional. Cell sorting experiments of human GBM cells demonstrated that p-HTMI labeled the same cell population as CD271, a proposed marker for stem cell-like cells and rapidly migrating cells in glioblastoma. Our results suggest that the LCO p-HTMI is a versatile tool for immediate and selective detection of neural and glioma stem and progenitor cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Adulto , Humanos , Glioblastoma/diagnóstico , Encéfalo , Neoplasias Encefálicas/diagnóstico , Adapaleno
11.
Neuro Oncol ; 25(6): 1073-1084, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36591963

RESUMO

BACKGROUND: Systemic delivery of anti-tumor therapeutic agents to brain tumors is thwarted by the blood-brain barrier (BBB), an organotypic specialization of brain endothelial cells (ECs). A failure of pharmacological compounds to cross BBB is one culprit for the dismal prognosis of glioblastoma (GBM) patients. Identification of novel vascular targets to overcome the challenges posed by the BBB in tumors for GBM treatment is urgently needed. METHODS: Temozolomide (TMZ) delivery was investigated in CT2A and PDGFB-driven RCAS/tv-a orthotopic glioma models. Transcriptome analysis was performed on ECs from murine gliomas. Mfsd2a deficient, Cav1 deficient, and Mfsd2a EC-specific inducible mice were developed to study the underlying molecular mechanisms. RESULTS: We demonstrated that inhibiting Wnt signaling by LGK974 could increase TMZ delivery and sensitize glioma to chemotherapy in both murine glioma models. Transcriptome analysis of ECs from murine gliomas revealed that Wnt signaling inhibition enhanced vascular transcytosis as indicated by the upregulation of PLVAP and downregulation of MFSD2A. Mfsd2a deficiency in mice enhances TMZ delivery in tumors, whereas constitutive expression of Mfsd2a in ECs suppresses the enhanced TMZ delivery induced by Wnt pathway inhibition in murine glioma. In addition, Wnt signaling inhibition enhanced caveolin-1 (Cav1)-positive caveolae-mediated transcytosis in tumor ECs. Moreover, Wnt signaling inhibitor or Mfsd2a deficiency fails to enhance TMZ penetration in tumors from Cav1-deficient mice. CONCLUSIONS: These results demonstrated that Wnt signaling regulates MFSD2A-dependent TMZ delivery through a caveolae-mediated EC transcytosis pathway. Our findings identify Wnt signaling as a promising therapeutic target to improve drug delivery for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Simportadores , Camundongos , Animais , Via de Sinalização Wnt , Células Endoteliais/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Temozolomida/uso terapêutico , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Transcitose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Simportadores/metabolismo , Simportadores/uso terapêutico
12.
Cancer Cell ; 41(6): 1134-1151.e10, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172581

RESUMO

Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted adeno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in αPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regression upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Animais , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/genética , Fenótipo , Encéfalo , Microambiente Tumoral
13.
BMC Cancer ; 12: 378, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22931209

RESUMO

BACKGROUND: MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. METHODS: We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student's t-test. RESULTS: We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that miR-21 is indeed regulated by PDGF signaling. CONCLUSIONS: Our data show that miR-21 and SOX2 are tightly regulated already during embryogenesis and define a distinct population with putative tumor cell of origin characteristics. Furthermore, we believe that miR-21 is a mediator of PDGF-driven brain tumors, which suggests miR-21 as a promising target for treatment of glioma.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glioma/genética , MicroRNAs/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Becaplermina , Northern Blotting , Western Blotting , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Linhagem Celular Transformada , Linhagem Celular Tumoral , Galinhas , Glioma/metabolismo , Glioma/patologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Transplante Heterólogo
14.
Proc Natl Acad Sci U S A ; 106(39): 16675-9, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805356

RESUMO

The levels of insulin-like growth factor-binding protein 2 (IGFBP2) are elevated during progression of many human cancers. By using a glial-specific transgenic mouse system (RCAS/Ntv-a), we reported previously that IGFBP2 is an oncogenic factor for glioma progression in combination with platelet-derived growth factor-beta (PDGFB). Because the INK4a-ARF locus is often deleted in high-grade gliomas (anaplastic oligodendroglioma and glioblastoma), we investigated the effect of the Ink4a-Arf-null background on IGFBP2-mediated progression of PDGFB-initiated oligodendroglioma. We demonstrate here that homozygous deletion of Ink4a-Arf bypasses the requirement of exogenously introduced IGFBP2 for glioma progression. Instead, absence of Ink4a-Arf resulted in elevated endogenous tumor cell IGFBP2. An inverse relationship between p16(INK4a) and IGFBP2 expression was also observed in human glioma tissue samples and in 90 different cancer cell lines by using Western blotting and reverse-phase protein lysate arrays. When endogenous IGFBP2 expression was attenuated by an RCAS vector expressing antisense IGFBP2 in our mouse model, a decreased incidence of anaplastic oligodendroglioma as well as prolonged survival was observed. Thus, p16(INK4a) is a negative regulator of the IGFBP2 oncogene. Loss of Ink4a-Arf results in increased IGFBP2, which contributes to glioma progression, thereby implicating IGFBP2 as a marker and potential therapeutic target for Ink4a-Arf-deleted gliomas.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-sis/metabolismo
15.
Nat Commun ; 13(1): 2236, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35469026

RESUMO

There is ample support for developmental regulation of glioblastoma stem cells. To examine how cell lineage controls glioblastoma stem cell function, we present a cross-species epigenome analysis of mouse and human glioblastoma stem cells. We analyze and compare the chromatin-accessibility landscape of nine mouse glioblastoma stem cell cultures of three defined origins and 60 patient-derived glioblastoma stem cell cultures by assay for transposase-accessible chromatin using sequencing. This separates the mouse cultures according to cell of origin and identifies three human glioblastoma stem cell clusters that show overlapping characteristics with each of the mouse groups, and a distribution along an axis of proneural to mesenchymal phenotypes. The epigenetic-based human glioblastoma stem cell clusters display distinct functional properties and can separate patient survival. Cross-species analyses reveals conserved epigenetic regulation of mouse and human glioblastoma stem cells. We conclude that epigenetic control of glioblastoma stem cells primarily is dictated by developmental origin which impacts clinically relevant glioblastoma stem cell properties and patient survival.


Assuntos
Glioblastoma , Linhagem da Célula/genética , Cromatina/genética , Epigênese Genética , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas
16.
Int J Cancer ; 129(1): 45-60, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20824710

RESUMO

Numerous studies support a role for Sox2 to keep stem cells and progenitor cells in an immature and proliferative state. Coexpression of Sox2 and GFAP has been found in regions of the adult brain where neural stem cells are present and in human glioma cells. In our study, we have investigated the roles of Sox2 and its counteracting partner Sox21 in human glioma cells. We show for the first time that Sox21 is expressed in both primary glioblastoma and in human glioma cell lines. We found that coexpression of Sox2, GFAP and Sox21 was mutually exclusive with expression of fibronectin. Our result suggests that glioma consists of at least two different cell populations: Sox2(+) /GFAP(+) /Sox21(+) /FN(-) and Sox2(-) /GFAP(-) /Sox21(-) /FN(+) . Reduction of Sox2 expression by using siRNA against Sox2 or by overexpressing Sox21 using a tetracycline-regulated expression system (Tet-on) caused decreased GFAP expression and a reduction in cell number due to induction of apoptosis. We suggest that Sox21 can negatively regulate Sox2 in glioma. Our findings imply that Sox2 and Sox21 may be interesting targets for the development of novel glioma therapy.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB2/genética , Apoptose , Sequência de Bases , Western Blotting , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Primers do DNA , Imunofluorescência , Proteína Glial Fibrilar Ácida/genética , Glioma/patologia , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase
17.
BMC Mol Biol ; 12: 28, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21733196

RESUMO

BACKGROUND: CGGBP1 is a CGG-triplet repeat binding protein, which affects transcription from CGG-triplet-rich promoters such as the FMR1 gene and the ribosomal RNA gene clusters. Earlier, we reported some previously unknown functions of CGGBP1 in gene expression during heat shock stress response. Recently we had found CGGBP1 to be a cell cycle regulatory midbody protein required for normal cytokinetic abscission in normal human fibroblasts, which have all the cell cycle regulatory mechanisms intact. RESULTS: In this study we explored the role of CGGBP1 in the cell cycle in various cancer cell lines. CGGBP1 depletion by RNA interference in tumor-derived cells caused an increase in the cell population at G0/G1 phase and reduced the number of cells in the S phase. CGGBP1 depletion also increased the expression of cell cycle regulatory genes CDKN1A and GAS1, associated with reductions in histone H3 lysine 9 trimethylation in their promoters. By combining RNA interference and genetic mutations, we found that the role of CGGBP1 in cell cycle involves multiple mechanisms, as single deficiencies of CDKN1A, GAS1 as well as TP53, INK4A or ARF failed to rescue the G0/G1 arrest caused by CGGBP1 depletion. CONCLUSIONS: Our results show that CGGBP1 expression is important for cell cycle progression through multiple parallel mechanisms including the regulation of CDKN1A and GAS1 levels.


Assuntos
Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/genética , Fase G1 , Proteínas Ligadas por GPI/genética , Humanos , Camundongos , Neoplasias/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/genética , Fase de Repouso do Ciclo Celular , Fase S , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
18.
Nat Med ; 10(11): 1257-60, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502845

RESUMO

Bioluminescence imaging has previously been used to monitor the formation of grafted tumors in vivo and measure cell number during tumor progression and response to therapy. The development and optimization of successful cancer therapy strategies may well require detailed and specific assessment of biological processes in response to mechanistic intervention. Here, we use bioluminescence imaging to monitor the cell cycle in a genetically engineered, histologically accurate model of glioma in vivo. In these platelet-derived growth factor (PDGF)-driven oligodendrogliomas, G1 cell-cycle arrest is generated by blockade of either the PDGF receptor or mTOR using small-molecule inhibitors.


Assuntos
Ciclo Celular/fisiologia , Modelos Animais de Doenças , Medições Luminescentes/métodos , Oligodendroglioma/fisiopatologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Proteínas de Ciclo Celular/genética , Primers do DNA , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Transgênicos , Oligodendroglioma/metabolismo , Ftalazinas/farmacologia , Regiões Promotoras Genéticas/genética , Proteínas Quinases/metabolismo , Piridinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética
19.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34228647

RESUMO

Passage of systemically delivered pharmacological agents into the brain is largely blocked by the blood-brain-barrier (BBB), an organotypic specialization of brain endothelial cells (ECs). Tumor vessels in glioblastoma (GBM), the most common malignant brain tumor in humans, are abnormally permeable, but this phenotype is heterogeneous and may differ between the tumor's center and invasive front. Here, through single-cell RNA sequencing (scRNA-seq) of freshly isolated ECs from human glioblastoma and paired tumor peripheral tissues, we have constructed a molecular atlas of human brain ECs providing unprecedented molecular insight into the heterogeneity of the human BBB and its molecular alteration in glioblastoma. We identified 5 distinct EC phenotypes representing different states of EC activation and BBB impairment, and associated with different anatomical locations within and around the tumor. This unique data resource provides key information for designing rational therapeutic regimens and optimizing drug delivery.


Assuntos
Transporte Biológico/genética , Barreira Hematoencefálica , Neoplasias Encefálicas , Proteínas de Transporte/genética , Permeabilidade da Membrana Celular/genética , Células Endoteliais , Glioblastoma , Variação Biológica da População , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
20.
Cell Rep ; 32(2): 107897, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668248

RESUMO

Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells. We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Terapia de Alvo Molecular , Medicina de Precisão , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Heterogeneidade Genética , Genoma Humano , Glioblastoma/genética , Humanos , Camundongos Endogâmicos BALB C , Mutação/genética , Inibidores de Proteassoma/farmacologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA