Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Evol ; 168: 103195, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35596976

RESUMO

Humans are unique among apes and other primates in the musculoskeletal design of their lower back, pelvis, and lower limbs. Here, we describe the three-dimensional ground reaction forces and lower/hindlimb joint mechanics of human and bipedal chimpanzees walking over a full stride and test whether: 1) the estimated limb joint work and power during the stance phase, especially the single-support period, is lower in humans than bipedal chimpanzees, 2) the limb joint work and power required for limb swing is lower in humans than in bipedal chimpanzees, and 3) the estimated total mechanical power during walking, accounting for the storage of passive elastic strain energy in humans, is lower in humans than in bipedal chimpanzees. Humans and bipedal chimpanzees were compared at matched dimensionless and dimensional velocities. Our results indicate that humans walk with significantly less work and power output in the first double-support period and the single-support period of stance, but markedly exceed chimpanzees in the second double-support period (i.e., push-off). Humans generate less work and power in limb swing, although the species difference in limb swing power was not statistically significant. We estimated that total mechanical positive 'muscle fiber' work and power were 46.9% and 35.8% lower, respectively, in humans than in bipedal chimpanzees at matched dimensionless speeds. This is due in part to mechanisms for the storage and release of elastic energy at the ankle and hip in humans. Furthermore, these results indicate distinct 'heel strike' and 'lateral balance' mechanics in humans and bipedal chimpanzees and suggest a greater dissipation of mechanical energy through soft tissue deformations in humans. Together, our results document important differences between human and bipedal chimpanzee walking mechanics over a full stride, permitting a more comprehensive understanding of the mechanics and energetics of chimpanzee bipedalism and the evolution of hominin walking.


Assuntos
Pan troglodytes , Caminhada , Animais , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Humanos , Articulações/fisiologia , Extremidade Inferior/fisiologia , Pan troglodytes/fisiologia , Caminhada/fisiologia
2.
J Exp Biol ; 225(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098305

RESUMO

Humans walk with an upright posture on extended limbs during stance and with a double-peaked vertical ground reaction force. Our closest living relatives, chimpanzees, are facultative bipeds that walk with a crouched posture on flexed, abducted hind limbs and with a single-peaked vertical ground reaction force. Differences in human and bipedal chimpanzee three-dimensional (3D) kinematics have been well quantified, yet it is unclear what the independent effects of using a crouched posture are on 3D gait mechanics for humans, and how they compare with chimpanzees. Understanding the relationships between posture and gait mechanics, with known differences in morphology between species, can help researchers better interpret the effects of trait evolution on bipedal walking. We quantified pelvis and lower limb 3D kinematics and ground reaction forces as humans adopted a series of upright and crouched postures and compared them with data from bipedal chimpanzee walking. Human crouched-posture gait mechanics were more similar to that of bipedal chimpanzee gait than to normal human walking, especially in sagittal plane hip and knee angles. However, there were persistent differences between species, as humans walked with less transverse plane pelvis rotation, less hip abduction, and greater peak anterior-posterior ground reaction force in late stance than chimpanzees. Our results suggest that human crouched-posture walking reproduces only a small subset of the characteristics of 3D kinematics and ground reaction forces of chimpanzee walking, with the remaining differences likely due to the distinct musculoskeletal morphologies of humans and chimpanzees.


Assuntos
Marcha , Pan troglodytes , Animais , Fenômenos Biomecânicos , Humanos , Postura , Caminhada
3.
Proc Natl Acad Sci U S A ; 114(28): 7343-7348, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652350

RESUMO

Since at least the 1920s, it has been reported that common chimpanzees (Pan troglodytes) differ from humans in being capable of exceptional feats of "super strength," both in the wild and in captive environments. A mix of anecdotal and more controlled studies provides some support for this view; however, a critical review of available data suggests that chimpanzee mass-specific muscular performance is a more modest 1.5 times greater than humans on average. Hypotheses for the muscular basis of this performance differential have included greater isometric force-generating capabilities, faster maximum shortening velocities, and/or a difference in myosin heavy chain (MHC) isoform content in chimpanzee relative to human skeletal muscle. Here, we show that chimpanzee muscle is similar to human muscle in its single-fiber contractile properties, but exhibits a much higher fraction of MHC II isoforms. Unlike humans, chimpanzee muscle is composed of ∼67% fast-twitch fibers (MHC IIa+IId). Computer simulations of species-specific whole-muscle models indicate that maximum dynamic force and power output is 1.35 times higher in a chimpanzee muscle than a human muscle of similar size. Thus, the superior mass-specific muscular performance of chimpanzees does not stem from differences in isometric force-generating capabilities or maximum shortening velocities-as has long been suggested-but rather is due in part to differences in MHC isoform content and fiber length. We propose that the hominin lineage experienced a decline in maximum dynamic force and power output during the past 7-8 million years in response to selection for repetitive, low-cost contractile behavior.


Assuntos
Contração Muscular/fisiologia , Força Muscular , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Pan troglodytes/fisiologia , Animais , Evolução Biológica , Simulação por Computador , Humanos , Masculino , Isoformas de Proteínas/fisiologia , Especificidade da Espécie
4.
J Physiol ; 594(12): 3407-21, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26824934

RESUMO

KEY POINTS: Muscle fatigue can be defined as the transient decrease in maximal force that occurs in response to muscle use. Fatigue develops because of a complex set of changes within the neuromuscular system that are difficult to evaluate simultaneously in humans. The skeletal muscle of older adults fatigues less than that of young adults during static contractions. The potential sources of this difference are multiple and intertwined. To evaluate the individual mechanisms of fatigue, we developed an integrative computational model based on neural, biochemical, morphological and physiological properties of human skeletal muscle. Our results indicate first that the model provides accurate predictions of fatigue and second that the age-related resistance to fatigue is due largely to a lower reliance on glycolytic metabolism during contraction. This model should prove useful for generating hypotheses for future experimental studies into the mechanisms of muscle fatigue. ABSTRACT: During repeated or sustained muscle activation, force-generating capacity becomes limited in a process referred to as fatigue. Multiple factors, including motor unit activation patterns, muscle fibre contractile properties and bioenergetic function, can impact force-generating capacity and thus the potential to resist fatigue. Given that neuromuscular fatigue depends on interrelated factors, quantifying their independent effects on force-generating capacity is not possible in vivo. Computational models can provide insight into complex systems in which multiple inputs determine discrete outputs. However, few computational models to date have investigated neuromuscular fatigue by incorporating the multiple levels of neuromuscular function known to impact human in vivo function. To address this limitation, we present a computational model that predicts neural activation, biomechanical forces, intracellular metabolic perturbations and, ultimately, fatigue during repeated isometric contractions. This model was compared with metabolic and contractile responses to repeated activation using values reported in the literature. Once validated in this way, the model was modified to reflect age-related changes in neuromuscular function. Comparisons between initial and age-modified simulations indicated that the age-modified model predicted less fatigue during repeated isometric contractions, consistent with reports in the literature. Together, our simulations suggest that reduced glycolytic flux is the greatest contributor to the phenomenon of age-related fatigue resistance. In contrast, oxidative resynthesis of phosphocreatine between intermittent contractions and inherent buffering capacity had minimal impact on predicted fatigue during isometric contractions. The insights gained from these simulations cannot be achieved through traditional in vivo or in vitro experimentation alone.


Assuntos
Envelhecimento/fisiologia , Modelos Biológicos , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Metabolismo Energético , Humanos , Masculino , Contração Muscular
5.
J Hum Evol ; 86: 32-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26194031

RESUMO

The common chimpanzee (Pan troglodytes) is a facultative biped and our closest living relative. As such, the musculoskeletal anatomies of their pelvis and hind limbs have long provided a comparative context for studies of human and fossil hominin locomotion. Yet, how the chimpanzee pelvis and hind limb actually move during bipedal walking is still not well defined. Here, we describe the three-dimensional (3-D) kinematics of the pelvis, hip, knee and ankle during bipedal walking and compare those values to humans walking at the same dimensionless and dimensional velocities. The stride-to-stride and intraspecific variations in 3-D kinematics were calculated using the adjusted coefficient of multiple correlation. Our results indicate that humans walk with a more stable pelvis than chimpanzees, especially in tilt and rotation. Both species exhibit similar magnitudes of pelvis list, but with segment motion that is opposite in phasing. In the hind limb, chimpanzees walk with a more flexed and abducted limb posture, and substantially exceed humans in the magnitude of hip rotation during a stride. The average stride-to-stride variation in joint and segment motion was greater in chimpanzees than humans, while the intraspecific variation was similar on average. These results demonstrate substantial differences between human and chimpanzee bipedal walking, in both the sagittal and non-sagittal planes. These new 3-D kinematic data are fundamental to a comprehensive understanding of the mechanics, energetics and control of chimpanzee bipedalism.


Assuntos
Fenômenos Biomecânicos/fisiologia , Extremidade Inferior/fisiologia , Pan troglodytes/fisiologia , Pelve/fisiologia , Caminhada/fisiologia , Adulto , Animais , Antropologia Física , Marcadores Fiduciais , Humanos , Imageamento Tridimensional , Masculino , Adulto Jovem
6.
Am J Phys Anthropol ; 156(3): 422-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25407636

RESUMO

Center of mass (CoM) oscillations were documented for 81 bipedal walking strides of three chimpanzees. Full-stride ground reaction forces were recorded as well as kinematic data to synchronize force to gait events and to determine speed. Despite being a bent-hip, bent-knee (BHBK) gait, chimpanzee walking uses pendulum-like motion with vertical oscillations of the CoM that are similar in pattern and relative magnitude to those of humans. Maximum height is achieved during single support and minimum height during double support. The mediolateral oscillations of the CoM are more pronounced relative to stature than in human walking when compared at the same Froude speed. Despite the pendular nature of chimpanzee bipedalism, energy recoveries from exchanges of kinetic and potential energies are low on average and highly variable. This variability is probably related to the poor phasic coordination of energy fluctuations in these facultatively bipedal animals. The work on the CoM per unit mass and distance (mechanical cost of transport) is higher than that in humans, but lower than that in bipedally walking monkeys and gibbons. The pronounced side sway is not passive, but constitutes 10% of the total work of lifting and accelerating the CoM. CoM oscillations of bipedally walking chimpanzees are distinctly different from those of BHBK gait of humans with a flat trajectory, but this is often described as "chimpanzee-like" walking. Human BHBK gait is a poor model for chimpanzee bipedal walking and offers limited insights for reconstructing early hominin gait evolution.


Assuntos
Fenômenos Biomecânicos/fisiologia , Pan troglodytes/fisiologia , Caminhada/fisiologia , Animais , Antropologia Física , Marcha/fisiologia
7.
Am J Biol Anthropol ; 183(3): e24845, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37671481

RESUMO

OBJECTIVES: Musculoskeletal modeling is a powerful approach for studying the biomechanics and energetics of locomotion. Australopithecus (A.) afarensis is among the best represented fossil hominins and provides critical information about the evolution of musculoskeletal design and locomotion in the hominin lineage. Here, we develop and evaluate a three-dimensional (3-D) musculoskeletal model of the pelvis and lower limb of A. afarensis for predicting muscle-tendon moment arms and moment-generating capacities across lower limb joint positions encompassing a range of locomotor behaviors. MATERIALS AND METHODS: A 3-D musculoskeletal model of an adult A. afarensis pelvis and lower limb was developed based primarily on the A.L. 288-1 partial skeleton. The model includes geometric representations of bones, joints and 35 muscle-tendon units represented using 43 Hill-type muscle models. Two muscle parameter datasets were created from human and chimpanzee sources. 3-D muscle-tendon moment arms and isometric joint moments were predicted over a wide range of joint positions. RESULTS: Predicted muscle-tendon moment arms generally agreed with skeletal metrics, and corresponded with human and chimpanzee models. Human and chimpanzee-based muscle parameterizations were similar, with some differences in maximum isometric force-producing capabilities. The model is amenable to size scaling from A.L. 288-1 to the larger KSD-VP-1/1, which subsumes a wide range of size variation in A. afarensis. DISCUSSION: This model represents an important tool for studying the integrated function of the neuromusculoskeletal systems in A. afarensis. It is similar to current human and chimpanzee models in musculoskeletal detail, and will permit direct, comparative 3-D simulation studies.


Assuntos
Hominidae , Pan troglodytes , Animais , Adulto , Humanos , Hominidae/fisiologia , Extremidade Inferior , Músculo Esquelético/fisiologia , Pelve
8.
ArXiv ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39184537

RESUMO

Humans rely on ankle torque to maintain standing balance, particularly in the presence of small to moderate perturbations. Reductions in maximum torque (MT) production and maximum rate of torque development (MRTD) occur at the ankle with age, diminishing stability. Ankle exoskeletons are powered orthotic devices that may assist older adults by compensating for reduced muscle force and power production capabilities. They may also be able to assist with ankle strategies used for balance. However, no studies have investigated the effect of such devices on balance in older adults. Here, we model the effect ankle exoskeletons have on stability in physics-based models of healthy young and old adults, focusing on the mitigation of age-related deficits such as reduced MT and MRTD. We show that an ankle exoskeleton moderately reduces feasible stability boundaries in users who have full ankle strength. For individuals with age-related deficits, there is a trade-off. While exoskeletons augment stability in low velocity conditions, they reduce stability in some high velocity conditions. Our results suggest that well-established control strategies must still be experimentally validated in older adults.

9.
J Exp Biol ; 216(Pt 19): 3709-23, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006347

RESUMO

Musculoskeletal models have become important tools for studying a range of muscle-driven movements. However, most work has been in modern humans, with few applications in other species. Chimpanzees are facultative bipeds and our closest living relatives, and have provided numerous important insights into our own evolution. A chimpanzee musculoskeletal model would allow integration across a wide range of laboratory-based experimental data, providing new insights into the determinants of their locomotor performance capabilities, as well as the origins and evolution of human bipedalism. Here, we described a detailed three-dimensional (3D) musculoskeletal model of the chimpanzee pelvis and hind limb. The model includes geometric representations of bones and joints, as well as 35 muscle-tendon units that were represented using 44 Hill-type muscle models. Muscle architecture data, such as muscle masses, fascicle lengths and pennation angles, were drawn from literature sources. The model permits calculation of 3D muscle moment arms, muscle-tendon lengths and isometric muscle forces over a wide range of joint positions. Muscle-tendon moment arms predicted by the model were generally in good agreement with tendon-excursion estimates from cadaveric specimens. Sensitivity analyses provided information on the parameters that model predictions are most and least sensitive to, which offers important context for interpreting future results obtained with the model. Comparisons with a similar human musculoskeletal model indicate that chimpanzees are better suited for force production over a larger range of joint positions than humans. This study represents an important step in understanding the integrated function of the neuromusculoskeletal systems in chimpanzee locomotion.


Assuntos
Perna (Membro)/anatomia & histologia , Locomoção , Modelos Anatômicos , Músculo Esquelético/anatomia & histologia , Pan troglodytes/anatomia & histologia , Pelve/anatomia & histologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Perna (Membro)/fisiologia , Masculino , Modelos Biológicos , Músculo Esquelético/fisiologia , Pelve/fisiologia
10.
Int J Numer Method Biomed Eng ; 39(12): e3777, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743768

RESUMO

Optimal control musculoskeletal simulation is a valuable approach for studying fundamental and clinical aspects of human movement. However, the high computational demand has long presented a substantial challenge, creating a need to improve simulation performance. The OpenSim Moco software package permits musculoskeletal simulation problems to be solved in parallel on multicore processors using the CasADi optimal control library, potentially reducing the computational demand. However, the computational performance of this framework has not been thoroughly examined. Thus, we aimed to investigate the computational speed-up obtained via multicore parallel computing relative to solving problems serially (i.e., using a single core) in optimal control simulations of human movement in OpenSim Moco. Simulations were solved using up to 18 cores with a variety of temporal mesh interval densities and using two different initial guess strategies. We examined a range of musculoskeletal models and movements that included two- and three-dimensional models, tracking and predictive simulations, and walking and reaching tasks. The maximum overall parallel speed-up was problem specific and ranged from 1.7 to 7.7 times faster than serial, with most of the speed-up achieved by about 6 processor cores. Parallel speed-up was generally greater on finer temporal meshes, while the initial guess strategy had minimal impact on speed-up. Considerable speed-up can be achieved for some optimal control simulation problems in OpenSim Moco by leveraging the multicore processors often available in modern computers. However, since improvements are problem specific, achieving optimal computational performance will require some degree of exploration by the end user.


Assuntos
Software , Caminhada , Humanos , Simulação por Computador , Movimento
11.
Exp Gerontol ; 173: 112102, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693530

RESUMO

Changes in old age that contribute to the complex issue of an increased metabolic cost of walking (mass-specific energy cost per unit distance traveled) in older adults appear to center at least in part on changes in gait biomechanics. However, age-related changes in energy metabolism, neuromuscular function and connective tissue properties also likely contribute to this problem, of which the consequences are poor mobility and increased risk of inactivity-related disease and disability. The U.S. National Institute on Aging convened a workshop in September 2021 with an interdisciplinary group of scientists to address the gaps in research related to the mechanisms and consequences of changes in mobility in old age. The goal of the workshop was to identify promising ways to move the field forward toward improving gait performance, decreasing energy cost, and enhancing mobility for older adults. This report summarizes the workshop and brings multidisciplinary insight into the known and potential causes and consequences of age-related changes in gait biomechanics. We highlight how gait mechanics and energy cost change with aging, the potential neuromuscular mechanisms and role of connective tissue in these changes, and cutting-edge interventions and technologies that may be used to measure and improve gait and mobility in older adults. Key gaps in the literature that warrant targeted research in the future are identified and discussed.


Assuntos
National Institute on Aging (U.S.) , Caminhada , Estados Unidos , Fenômenos Biomecânicos , Marcha
12.
Proc Biol Sci ; 279(1733): 1498-505, 2012 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-22072601

RESUMO

A popular hypothesis for human running is that gait mechanics and muscular activity are optimized in order to minimize the cost of transport (CoT). Humans running at any particular speed appear to naturally select a stride length that maintains a low CoT when compared with other possible stride lengths. However, it is unknown if the nervous system prioritizes the CoT itself for minimization, or if some other quantity is minimized and a low CoT is a consequential effect. To address this question, we generated predictive computer simulations of running using an anatomically inspired musculoskeletal model and compared the results with data collected from human runners. Three simulations were generated by minimizing the CoT, the total muscle activation or the total muscle stress, respectively. While all the simulations qualitatively resembled real human running, minimizing activation predicted the most realistic joint angles and timing of muscular activity. While minimizing the CoT naturally predicted the lowest CoT, minimizing activation predicted a more realistic CoT in comparison with the experimental mean. The results suggest a potential control strategy centred on muscle activation for economical running.


Assuntos
Metabolismo Energético , Corrida/fisiologia , Adulto , Atletas , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Humanos , Articulações/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia
13.
J Biomech ; 138: 111114, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35576633

RESUMO

Humans can quickly adapt to different task demands in cycling. The motor system continuously manipulates applied pedal forces under the influence of gravitational and inertial forces, but the muscular control strategy remains unknown. The aim of this study was to investigate muscular control and coordination when altering pedal force patterns, using a musculoskeletal model with dynamic tracking optimization and induced acceleration analysis (IAA). The tracking data were pedaling kinematics and kinetics in recreational cyclists before and after learning to apply pedal force toward a tangential target direction in one-legged pedaling (Park et al., 2021). The gravity and inertial force contributions to pedal forces were relatively unchanged after practice due to the consistent rider posture and pedaling mechanics. Pedal force contributions induced by individual muscle-tendon units (MTUs) were also relatively consistent in direction before and after practice, likely due to similar joint positions and task constraints in the two conditions. However, the total applied pedal force from the sum of IAA component contributions was more closely directed towards the target due to coordinated changes in the magnitudes of contributions of the resultant pedal force by individual MTUs. The improvement in pedal force targeting seen in this complex coordination task may be possible through a control strategy of scaling muscle activity level. The rapid adaptation to a new pedal force pattern in this constrained task is facilitated by a relatively simple strategy of scaling muscle activation amplitude.


Assuntos
, Músculo Esquelético , Ciclismo/fisiologia , Fenômenos Biomecânicos , Pé/fisiologia , Gravitação , Humanos , Músculo Esquelético/fisiologia
14.
Med Eng Phys ; 103: 103790, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500997

RESUMO

Participant-specific musculoskeletal models are needed to accurately estimate lower back internal kinetic demands and injury risk. In this study we developed the framework for incorporating an electromyography optimization (EMGopt) approach within OpenSim (https://simtk.org/projects/emg_opt_tool) and evaluated lower back demands estimated from the model during gait. Kinematic, external kinetic, and EMG data were recorded from six participants as they performed walking and carrying tasks on a treadmill. For evaluation, predicted lumbar vertebral joint forces were compared to those from a generic static optimization approach (SOpt) and to previous studies. Further, model-estimated muscle activations were compared to recorded EMG, and model sensitivity to day-to-day EMG variability was evaluated. Results showed the vertebral joint forces from the model were qualitatively similar in pattern and magnitude to literature reports. Compared to SOpt, the EMGopt approach predicted larger joint loads (p<.01) with muscle activations better matching individual participant EMG patterns. L5/S1 vertebral joint forces from EMGopt were sensitive to the expected variability of recorded EMG, but the magnitude of these differences (±4%) did not impact between-task comparisons. Despite limitations inherent to such models, the proposed musculoskeletal model and EMGopt approach appears well-suited for evaluating internal lower back demands during gait tasks.


Assuntos
Modelos Biológicos , Músculo Esquelético , Marcha/fisiologia , Humanos , Cinética , Vértebras Lombares/fisiologia , Músculo Esquelético/fisiologia
15.
Clin Biomech (Bristol, Avon) ; 94: 105632, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35364403

RESUMO

BACKGROUND: People with unilateral amputation typically walk with greater metabolic cost than able-bodied individuals, while preferring asymmetric walking characteristics. It is unclear if asymmetric walking is energetically optimal and how metabolic cost accounts for asymmetric patterns in people with amputation. The purpose of this study was to determine the effects of stance-time asymmetry on the metabolic cost of transport. METHODS: Fourteen participants (seven with amputation) completed two laboratory sessions where they walked on a treadmill while receiving real-time visual feedback about stance-time asymmetry. Expired gases were collected to determine the metabolic cost for a range of asymmetries (-15% to +15% in 5% increments, positive percentages represent more time on intact [dominant] limb). FINDINGS: Participants with amputation walked with greater (P = 0.008) stance-time asymmetry (4.34 ± 1.09%) compared with able-bodied participants (0.94 ± 2.44%). Stance-time asymmetry had a significant effect on metabolic cost (P < 0.001). The asymmetries coinciding with the predicted minimum metabolic cost for people with (3.23 ± 2.90%) and without (1.81 ± 2.18%) amputation were not different from preferred asymmetries (P = 0.365; p = 0.513), respectively. The cost of symmetric walking was 13.6% greater than near preferred walking for people with amputation (5% more time on intact limb). INTERPRETATION: Metabolic cost is not the only objective of walking, but like able-bodied individuals, it may influence how people with amputation walk. Rehabilitation typically tries to restore inter-limb symmetry after an injury, yet if the limbs are asymmetric, symmetric gait may not be optimal with current assistive devices.


Assuntos
Membros Artificiais , Amputação Cirúrgica/reabilitação , Teste de Esforço , Marcha , Humanos , Caminhada
16.
PLoS One ; 17(2): e0264346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192643

RESUMO

The direct collocation (DC) method has shown low computational costs in solving optimization problems in human movements, but it has rarely been used for solving optimal control pedaling problems. Thus, the aim of this study was to develop a DC framework for optimal control simulation of human pedaling within the OpenSim modeling environment. A planar bicycle-rider model was developed in OpenSim. The DC method was formulated in MATLAB to solve an optimal control pedaling problem using a data tracking approach. Using the developed DC framework, the optimal control pedaling problem was successfully solved in 24 minutes to ten hours with different objective function weightings and number of nodes from two different initial conditions. The optimal solutions for equal objective function weightings were successful in terms of tracking, with the model simulated pedal angles and pedal forces within ±1 standard deviation of the experimental data. With these weightings, muscle tendon unit (MTU) excitation patterns generally matched with burst timings and shapes observed in the experimental EMG data. Tracking quality and MTU excitation patterns were changed little by selection of node density above 31, and the optimal solution quality was not affected by initial guess used. The proposed DC framework could easily be turned into a predictive simulation with other objective functions such as fastest pedaling rate. This flexible and computationally efficient framework should facilitate the use of optimal control methods to study the biomechanics, energetics, and control of human pedaling.


Assuntos
Ciclismo/fisiologia , Simulação por Computador , Adulto , Ciclismo/normas , Fenômenos Biomecânicos , Feminino , Humanos , Masculino
17.
Clin Biomech (Bristol, Avon) ; 95: 105657, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500413

RESUMO

BACKGROUND: Gait asymmetry and a high incidence of lower back pain are typical for people with unilateral lower limb amputation. A common therapeutic objective is to improve gait symmetry; however, it is unknown whether better gait symmetry reduces lower back pain risk. To begin investigating this important clinical question, we examined a preexisting dataset to explore whether L5/S1 vertebral joint forces in people with unilateral lower limb amputation can be improved with better symmetry. METHODS: L5/S1 compression and resultant shear forces were estimated in each participant with unilateral lower limb amputation (n = 5) with an OpenSim musculoskeletal model during different levels of guided gait asymmetry. The amount of gait asymmetry was defined by bilateral stance times and guided via real-time feedback. A theoretical lowest L5/S1 force was determined from the minimum of a best-fit quadratic curves of L5/S1 forces at levels of guided asymmetry ranging from -10 to +15%. The forces found at the theoretical lowest force and during the 0% asymmetry level were compared to forces at preferred levels of asymmetry and to those from an able-bodied group (n = 5). FINDINGS: Results indicated that the forces for the people with unilateral lower limb amputation group at the preferred level of asymmetry were not different then at their 0% asymmetry condition, theoretical lowest L5/S1 forces, or the able-bodied group (all p-values > .23). INTERPRETATION: These preliminary results challenge the premise that restoring symmetric gait in people with unilateral lower limb amputation will reduce risk of lower back pain.


Assuntos
Amputados , Membros Artificiais , Dor Lombar , Amputação Cirúrgica , Fenômenos Biomecânicos , Marcha , Humanos , Dor Lombar/cirurgia , Caminhada
18.
Gait Posture ; 98: 101-108, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36095916

RESUMO

BACKGROUND: Gait asymmetries are common in many clinical populations (e.g., amputation, injury, or deformities) and are associated with a high incidence of lower back pain. Despite this high incidence, the impact of gait asymmetries on lower back kinetic demands are not well characterized due to experimental limitations in these clinical populations. Therefore, we artificially and safely induced gait asymmetry during walking in healthy able-bodied participants to examine lower back kinetic demands compared to their normal gait. RESEARCH QUESTION: Are lower back kinetic demands different during artificially induced asymmetries than those during normal gait? METHODS: L5/S1 vertebral joint kinetics and trunk muscle forces were estimated during gait in twelve healthy men and women with a musculoskeletal lower back model that uniquely incorporated participant-specific responses using an EMG optimization approach. Five walking conditions were conducted on a force-measuring treadmill, including normal unperturbed "symmetrical" gait, and asymmetrical gait induced by unilaterally altering leg mass, leg length, and ankle joint motion in various combinations. Gait symmetry index and lower back kinetics were compared with repeated-measures ANOVAs and post hoc tests (α = .05). RESULTS: The perturbations were successful in producing different degrees of step length and stance time gait asymmetries (p < .01). However, lower back kinetic demands associated with asymmetrical gait were similar to, or only moderately different from normal walking for most conditions despite the observed asymmetries. SIGNIFICANCE: Our findings indicate that the high incidence of lower back pain often associated with gait asymmetries may not be a direct effect of increased lower back demands. If biomechanical demands are responsible for the high incidence of lower back pain in such populations, daily tasks besides walking may be responsible and warrant further investigation.


Assuntos
Dor Lombar , Masculino , Humanos , Feminino , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Desigualdade de Membros Inferiores , Extremidade Inferior
19.
Exerc Sport Sci Rev ; 39(2): 59-67, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21206279

RESUMO

Recent estimates of muscle energy consumption during locomotion, based on computational models and muscle blood flow measurements, demonstrate complex patterns of energy use across the gait cycle, which are further complicated when task demands change. A deeper understanding of muscle energetics in locomotion will benefit from efforts to more tightly integrate muscle-specific approaches with organismal measurements.


Assuntos
Metabolismo Energético/fisiologia , Locomoção/fisiologia , Músculo Esquelético/metabolismo , Simulação por Computador , Humanos , Modelos Biológicos , Músculo Esquelético/fisiologia
20.
J Sports Sci Med ; 9(4): 572-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-24149783

RESUMO

The causes of able-bodied gait asymmetries are unclear. Mild (< 3 cm) leg-length inequality (LLI) may be one cause of these asymmetries; however, this idea has not been thoroughly investigated. The purpose of this study was to investigate the nature of the relationship between LLI and able-bodied gait asymmetries. We hypothesized that subjects (n = 26) with relatively large LLI, quantified radiographically, would display less symmetrical gait than subjects with relatively small LLI. Gait asymmetries for joint kinematics and joint kinetics were determined using standard gait analysis procedures. Symmetry coefficients were used to quantify bilateral gait symmetry for sagittal-plane hip, knee, and ankle joint angles, moments, and powers. A Pearson product-moment correlation coefficient (r) was used to evaluate the relationship between LLI and the aforementioned symmetry coefficients. Also, these symmetry coefficients were compared between subjects with relatively small LLI (LLI < 1 cm; n = 19) and relatively large LLI (LLI ≥ 1 cm; n = 7). Statistically significant relationships were observed between LLI and the symmetry coefficient for knee joint moment (r = -0.48) and power (r = -0.51), and ankle joint moment (r = -0.41) and power (r = -0.42). Similarly, subjects with relatively large LLI exhibited significantly lower symmetry coefficients for knee joint moment (p = 0.40) and power (p = 0.35), and ankle joint moment (p = 0.40) and power (p = 0.22) than subjects with relatively small LLI. Degree of bilateral symmetry for knee and ankle joint kinetics appears to be related to LLI in able- bodied gait. This finding supports the idea that LLI is one cause of able-bodied gait asymmetries. Other factors, however, are also likely to contribute to these gait asymmetries; these may include other morphological asymmetries as well as asymmetrical neuromuscular input to the lower limb muscles. Key pointsModerate negative relationships were observed between mild limb-length inequality and gait symmetry for knee and ankle moment and power.Subjects with relatively large mild limb-length inequality (between 1.0 and 2.3 cm) exhibited significantly less symmetrical gait for knee and ankle joint moment and power than subjects with relatively small mild limb-length inequality (< 1 cm).These results indicate that the degree of symmetry for knee and ankle joint kinetics appears to be related to mild limb-length inequality in able-bodied gait.These results further our understanding of normal human walking and provide important background information for future studies on gait pathology associated with mild limb-length inequality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA