Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World Neurosurg ; 149: e982-e988, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508487

RESUMO

BACKGROUND: At present, gamma knife radiosurgery plays an important role in neurosurgical procedures. Gamma knife radiosurgery has been used to treat many types of brain tumors and as a functional intervention. However, gamma knife treatment has a devastating effect on the normal brain parenchyma surrounding the target point. It causes increased vascular permeability, vasodilation, and swelling in endothelial cells. Ozone has antioxidant, antiapoptotic, and anti-inflammatory effects in the body. Thus, we evaluated the radioprotective effects of ozone in rats undergoing gamma knife radiation. METHODS: In the present study, 24 Sprague-Dawley male rats weighing 250-300 g in 3 groups of 8 rats each were used. The rats were selected randomly. The control group did not receive any gamma knife radiation. The other 2 groups received 50 Gy of radiation, with 1 group given ozone treatment and the other group not given ozone treatment after gamma knife radiosurgery. At 12 weeks after gamma knife radiation, the rats were sacrificed with high-dose anesthetic agents and the tissues prepared for evaluation. The slides were evaluated for necrosis, vacuolization, glial proliferation, and vascular proliferation using hematoxylin-eosin staining. Vascular endothelial growth factor (VEGF) and extracellular matrix metalloproteinase inducer (also known as CD147) were evaluated using immunohistochemical staining. RESULTS: VEGF expression in glial tissue was significantly less in the group receiving ozone (χ2 = 15.00; df = 4; P = 0.005) compared with the group that had not received ozone and was similar to the expression in the control group. CONCLUSIONS: The lower expression of VEGF in the group receiving ozone might cause less edema in the surrounding tissue owing to less degradation of vascular permeability in the rat brain tissue.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ozônio/farmacologia , Radiocirurgia/efeitos adversos , Vasodilatação/efeitos dos fármacos , Animais , Basigina/efeitos dos fármacos , Basigina/metabolismo , Basigina/efeitos da radiação , Barreira Hematoencefálica/efeitos da radiação , Encéfalo/patologia , Encéfalo/efeitos da radiação , Edema Encefálico , Permeabilidade Capilar/efeitos da radiação , Edema , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Ratos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/efeitos da radiação , Vasodilatação/efeitos da radiação
2.
Int J Biol Macromol ; 190: 244-258, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492244

RESUMO

Vitamin D3, vitamin K2, and Mg (10%, 1.25%, and 5%, w/w, respectively)-loaded PLA (12%, w/v) (TCP (5%, w/v))/PCL (12%, w/v) 1:1 (v/v) composite nanofibers (DKMF) were produced by electrospinning method (ES) and their osteoinductive effects were investigated in cell culture test. Neither pure nanofibers nor DKMF caused a significant cytotoxic effect in fibroblasts. The induction of the stem cell differentiation into osteogenic cells was observed in the cell culture with both DKMF and pure nanofibers, separately. Vitamin D3, vitamin K2, and magnesium demonstrated to support the osteogenic differentiation of mesenchymal stem cells by expressing Runx2, BMP2, and osteopontin and suppressing PPAR-γ and Sox9. Therefore, the Wnt/ß-catenin signaling pathway was activated by DKMF. DKMF promoted large axonal sprouting and needle-like elongation of osteoblast cells and enhanced cellular functions such as migration, infiltration, proliferation, and differentiation after seven days of incubation using confocal laser scanning microscopy. The results showed that DKMF demonstrated sustained drug release for 144 h, tougher and stronger structure, higher tensile strength, increased water up-take capacity, decreased degradation ratio, and slightly lower Tm and Tg values compared to pure nanofibers. Consequently, DKMF is a promising treatment approach in bone tissue engineering due to its osteoinductive effects.


Assuntos
Fosfatos de Cálcio/química , Colecalciferol/farmacologia , Magnésio/farmacologia , Nanofibras/química , Poliésteres/química , Vitamina K/farmacologia , Via de Sinalização Wnt , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Cinética , Nanofibras/ultraestrutura , Osseointegração/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Via de Sinalização Wnt/efeitos dos fármacos , Difração de Raios X
3.
Carbohydr Polym ; 233: 115820, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059880

RESUMO

Glioblastoma (GBM), the most common and extremely lethal type of brain tumor, is resistant to treatment and shows high recurrence rates. In the last decades, it is indicated that standard two-dimensional (2D) cell culture is inadequate to improve new therapeutic strategies and drug development. Hence, well-mimicked three-dimensional (3D) tumor platforms are needed to bridge the gap between in vitro and in vivo cancer models. In this study, bacterial cellulose nano-crystal (BCNC) containing polycaprolactone (PCL) /gelatin (Gel) nanofibrous composite scaffolds were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. The fiber diameters in the nanofibrous matrix were increased with an increased concentration of BCNC. Moreover, fiber morphology changed from the smooth formation to the beaded formation by increasing the concentration of the BCNC suspension. In-vitro biocompatibilities of nanofibrous scaffolds were tested with U251 MG glioblastoma cells and improved cell adhesion and proliferation was compared with PCL/Gel. PCL/Gel/BCNC were found suitable for enhancing axon growth and elongation supporting communication between tumor cells and the microenvironment, triggering the process of tumor recurrence. Based on these results, PCL/Gel/BCNC composite scaffolds are a good candidate for biomimetic GBM tumor platform.


Assuntos
Adesão Celular/efeitos dos fármacos , Celulose/química , Glioblastoma/metabolismo , Nanofibras/química , Nanopartículas/química , Alicerces Teciduais/química , Axônios/metabolismo , Linhagem Celular Tumoral , Celulose/toxicidade , Gelatina/química , Gelatina/toxicidade , Gluconacetobacter xylinus/química , Humanos , Nanofibras/toxicidade , Nanopartículas/toxicidade , Poliésteres/química , Poliésteres/toxicidade , Resistência à Tração
4.
Polymers (Basel) ; 12(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872547

RESUMO

Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (~300 µm) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications.

5.
Materials (Basel) ; 13(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545241

RESUMO

Glioblastoma (GBM), one of the most malignant types of human brain tumor, is resistant to conventional treatments and is associated with poor survival. Since the 3D extracellular matrix (ECM) of GBM microenvironment plays a significant role on the tumor behavior, the engineering of the ECM will help us to get more information on the tumor behavior and to define novel therapeutic strategies. In this study, polycaprolactone (PCL)/gelatin(Gel)/hyaluronic acid(HA) composite scaffolds with aligned and randomly oriented nanofibers were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. We investigated the effect of nanotopography and components of fibers on the mechanical, morphological, and hydrophilic properties of electrospun nanofiber as well as their biocompatibility properties. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) have been used to investigate possible interactions between components. The mean fiber diameter in the nanofiber matrix was increased with the presence of HA at low collector rotation speed. Moreover, the rotational velocity of the collector affected the fiber diameters as well as their homogenous distribution. Water contact angle measurements confirmed that hyaluronic acid-incorporated aligned nanofibers were more hydrophilic than that of random nanofibers. In addition, PCL/Gel/HA nanofibrous scaffold (7.9 MPa) exhibited a significant decrease in tensile strength compared to PCL/Gel nanofibrous mat (19.2 MPa). In-vitro biocompatibilities of nanofiber scaffolds were tested with glioblastoma cells (U251), and the PCL/Gel/HA scaffolds with random nanofiber showed improved cell adhesion and proliferation. On the other hand, PCL/Gel/HA scaffolds with aligned nanofiber were found suitable for enhancing axon growth and elongation supporting intracellular communication. Based on these results, PCL/Gel/HA composite scaffolds are excellent candidates as a biomimetic matrix for GBM and the study of the tumor.

6.
J Biomed Mater Res B Appl Biomater ; 106(6): 2384-2392, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29168913

RESUMO

Hydroxyapatite (HA), obtained from bovine bones, was successfully reinforced with hexagonal boron nitrite (h-BN). h-BN/HA composites, with BN content up to 1.5 wt %, were sintered at various temperatures between 1000 and 1300°C, in air. Well-sintered samples were obtained after sintering at 1200 and 1300°C. The presence of h-BN contributed to dense, fine, and well-crystallized microstructure. The results of X-ray diffraction analysis and FT-IR spectroscopy showed that the produced composites comprised biphasic ß-TCP/HCA (HCA: carbonate partially substituted HA). High values of mechanical properties were achieved, namely compression strength 155 MPa for the sample 0.5% h-BN/HA and Vickers microhardness of 716 HV for the samples 1.5% h-BN/HA, both sintered at 1300°C. U2OS human bone osteosarcoma proliferation and cell viability showed no adverse effect in the presence of h-BN/HA, suggesting the potential use of the produced materials as safe biomaterials in bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2384-2392, 2018.


Assuntos
Compostos de Boro , Durapatita , Teste de Materiais , Animais , Compostos de Boro/química , Compostos de Boro/farmacologia , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva , Durapatita/química , Durapatita/farmacologia , Humanos
7.
OMICS ; 20(11): 645-661, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27828769

RESUMO

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) lack robust diagnostics and prognostic biomarkers. Metabolomics is a postgenomics field that offers fresh insights for biomarkers of common complex as well as rare diseases. Using data on metabolite-disease associations published in the previous decade (2006-2016) in PubMed, ScienceDirect, Scopus, and Web of Science, we identified 101 metabolites as putative biomarkers for these three neurodegenerative diseases. Notably, uric acid, choline, creatine, L-glutamine, alanine, creatinine, and N-acetyl-L-aspartate were the shared metabolite signatures among the three diseases. The disease-metabolite-pathway associations pointed out the importance of membrane transport (through ATP binding cassette transporters), particularly of arginine and proline amino acids in all three neurodegenerative diseases. When disease-specific and common metabolic pathways were queried by using the pathway enrichment analyses, we found that alanine, aspartate, glutamate, and purine metabolism might act as alternative pathways to overcome inadequate glucose supply and energy crisis in neurodegeneration. These observations underscore the importance of metabolite-based biomarker research in deciphering the elusive pathophysiology of neurodegenerative diseases. Future research investments in metabolomics of complex diseases might provide new insights on AD, PD, and ALS that continue to place a significant burden on global health.


Assuntos
Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Doença de Parkinson/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Líquidos Corporais/metabolismo , Biologia Computacional , Humanos , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Metabolômica , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA