Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 290(50): 29732-41, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26491012

RESUMO

The pharmacokinetic (PK) behavior of monoclonal antibodies in cynomolgus monkeys (cynos) is generally translatable to that in humans. Unfortunately, about 39% of the antibodies evaluated for PKs in cynos have fast nonspecific (or non-target-mediated) clearance (in-house data). An empirical model relating variable region (Fv) charge and hydrophobicity to cyno nonspecific clearance was developed to gauge the risk an antibody would have for fast nonspecific clearance in the monkey. The purpose of this study was to evaluate the predictability of this empirical model on cyno nonspecific clearance with antibodies specifically engineered to have either high or low Fv charge. These amino acid changes were made in the Fv region of two test antibodies, humAb4D5-8 and anti-lymphotoxin α. The humAb4D5-8 has a typical nonspecific clearance in cynos, and by making it more positively charged, the antibody acquires fast nonspecific clearance, and making it less positively charged did not impact its clearance. Anti-lymphotoxin α has fast nonspecific clearance in cynos, and making it more positively charged caused it to clear even faster, whereas making it less positively charged caused it to clear slower and within the typical range. These trends in clearance were also observed in two other preclinical species, mice and rats. The effect of modifying Fv charge on subcutaneous bioavailability was also examined, and in general bioavailability was inversely related to the direction of the Fv charge change. Thus, modifying Fv charge appears to impact antibody PKs, and the changes tended to correlate with those predicted by the empirical model.


Assuntos
Região Variável de Imunoglobulina/imunologia , Farmacocinética , Animais , Ensaio de Imunoadsorção Enzimática , Região Variável de Imunoglobulina/química , Macaca fascicularis , Medição de Risco
2.
J Med Chem ; 67(5): 3287-3306, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38431835

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.


Assuntos
Doenças Respiratórias , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1 , Aldeído Oxidase/metabolismo , Oxirredutases/metabolismo , Proteínas do Citoesqueleto/metabolismo
3.
MAbs ; 14(1): 2085535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867780

RESUMO

Advances in antibody engineering have enabled the construction of novel molecular formats in diverse shapes and sizes, providing new opportunities for biologic therapies and expanding the need to understand how various structural aspects affect their distribution properties. To assess the effect of antibody size on systemic pharmacokinetics (PK) and tissue distribution with or without neonatal Fc receptor (FcRn) binding, we evaluated a series of non-mouse-binding anti-glycoprotein D monoclonal antibody formats, including IgG [~150 kDa], one-armed IgG [~100 kDa], IgG-HAHQ (attenuated FcRn binding) [~150 kDa], F(ab')2 [~100 kDa], and F(ab) [~50 kDa]. Tissue-specific concentration-time profiles were corrected for blood content based on vascular volumes and normalized based on interstitial volumes to allow estimation of interstitial concentrations and interstitial:serum concentration ratios. Blood correction demonstrated that the contribution of circulating antibody on total uptake was greatest at early time points and for highly vascularized tissues. Tissue interstitial PK largely mirrored serum exposure profiles. Similar interstitial:serum ratios were obtained for the two FcRn-binding molecules, IgG and one-armed IgG, which reached pseudo-steady-state kinetics in most tissues. For non-FcRn-binding molecules, interstitial:serum ratios changed over time, suggesting that these molecules did not reach steady-state kinetics during the study. Furthermore, concentration-time profiles of both intact and catabolized molecule were measured by a dual tracer approach, enabling quantification of tissue catabolism and demonstrating that catabolism levels were highest for IgG-HAHQ. Overall, these data sets provide insight into factors affecting preclinical distribution and may be useful in estimating interstitial concentrations and/or catabolism in human tissues.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Antígenos de Histocompatibilidade Classe I , Humanos , Recém-Nascido , Cinética , Receptores Fc , Distribuição Tecidual
4.
PLoS One ; 5(2): e9364, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20186331

RESUMO

Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice.


Assuntos
Diagnóstico por Imagem/métodos , Luciferases/metabolismo , Medições Luminescentes/métodos , Neoplasias Mamárias Experimentais/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Vetores Genéticos/genética , Lentivirus/genética , Luciferases/genética , Medições Luminescentes/instrumentação , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/diagnóstico , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Sensibilidade e Especificidade , Fatores de Tempo , Transfecção , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA