RESUMO
Primary cilia act as physical-chemical sensors and their functions include the perception of the extracellular milieu, regulation of organogenesis, and cell polarity. In general, these cells are monociliated and the single cilium possesses diverse receptors and channels which are involved in morphogenesis and growth signaling, and are, therefore, important for cell proliferation and differentiation. In this study, we used an in vitro model of C2C12 myoblasts to evaluate the effect of DNA damage induced by gamma ionizing radiation on primary cilia incidence. A significantly higher number of ciliated cells were observed after 1 day post-irradiation with 2-20 Gy when compared with non-irradiated cells. After 3 days post-irradiation, the cilia incidence in cells had decreased slightly when treated with 2, 6, and 10 Gy, although an increase in incidence rate was observed in cells treated with 20 Gy. Multi-ciliated cells were also detected in myoblasts irradiated with 10 and 20 Gy but not in non-irradiated cells or after low irradiation (2-6 Gy). Irradiation also caused a dose-dependent decrease in cell viability and proliferation and corresponding cell cycle arrest. Furthermore, an activation of caspases 3/7, 8, and 9 was observed after higher radiation (10 and 20 Gy) with increased apoptosis. Together, our results show that irradiation by gamma rays promotes myoblast ciliogenesis, with pronounced effects observed after 3 days post-irradiation. We conclude that irradiation doses of 10 and 20 Gy are sufficient to induce cell death and are responsible for the formation of multiple cilia originating from multiple basal bodies.
Assuntos
Cílios/efeitos da radiação , Mioblastos/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspases/metabolismo , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Centrossomo/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Mioblastos/citologia , Mioblastos/metabolismo , Radiação IonizanteRESUMO
Bone marrow-derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP(+)) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP(+) lin(-) Sca-1(+) cells into non-haematopoietic tissues. The transplantation of BM cells or GFP(+) lin(-) Sca-1(+) cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP(+) cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP(+) lin(-) Sca-1(+) cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.
Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea , Quimerismo , Trato Gastrointestinal/fisiologia , Transplante de Células-Tronco Hematopoéticas , Regeneração , Irradiação Corporal Total , Animais , DNA/metabolismo , Citometria de Fluxo , Trato Gastrointestinal/citologia , Proteínas de Fluorescência Verde/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Intestino Delgado/citologia , Intestino Delgado/fisiologia , Fígado/citologia , Camundongos Endogâmicos C57BL , Modelos BiológicosRESUMO
Terminally-differentiated cells cease to proliferate and acquire specific sets of expressed genes and functions distinguishing them from less differentiated and cancer cells. Mature granulocytes show lobular structure of cell nuclei with highly condensed chromatin in which HP1 proteins are replaced by MNEI. These structural features of chromatin correspond to low level of gene expression and the loss of some important functions as DNA damage repair, shown in this work and, on the other hand, acquisition of a new specific function consisting in the release of chromatin extracellular traps in response to infection by pathogenic microbes. Granulocytic differentiation is incomplete in myeloid leukemia and is manifested by persistence of lower levels of HP1γ and HP1ß isoforms. This immaturity is accompanied by acquisition of DDR capacity allowing to these incompletely differentiated multi-lobed neutrophils of AML patients to respond to induction of DSB by γ-irradiation. Immature granulocytes persist frequently in blood of treated AML patients in remission. These granulocytes contrary to mature ones do not release chromatin for NETs after activation with phorbol myristate-12 acetate-13 and do not exert the neutrophil function in immune defence. We suggest therefore the detection of HP1 expression in granulocytes of AML patients as a very sensitive indicator of their maturation and functionality after the treatment. Our results show that the changes in chromatin structure underlie a major transition in functioning of the genome in immature granulocytes. They show further that leukemia stem cells can differentiate ex vivo to mature granulocytes despite carrying the translocation BCR/ABL.
Assuntos
Diferenciação Celular , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Granulócitos/patologia , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Neutrófilos/patologia , Western Blotting , Proliferação de Células , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Imunofluorescência , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acetato de TetradecanoilforbolRESUMO
Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells.
Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Dano ao DNA/efeitos da radiação , Leucemia de Células T/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Rad51 Recombinase/antagonistas & inibidores , Reparo do DNA , Humanos , Células Jurkat , Leucemia de Células T/genética , Leucemia de Células T/patologia , Inibidores de Proteínas Quinases/farmacologia , Radiação IonizanteRESUMO
We studied the effect of pre-incubation with NU7441, a specific inhibitor of DNA-dependent protein kinase (DNA-PK), on molecular mechanisms triggered by ionizing radiation (IR). The experimental design involved four groups of human T-lymphocyte leukaemic MOLT-4 cells: control, NU7441-treated (1 µM), IR-treated (1 Gy), and combination of NU7441 and IR. We used flow cytometry for apoptosis assessment, Western blotting and ELISA for detection of proteins involved in DNA repair signalling and epifluorescence microscopy for detection of IR-induced phosphorylation of histone H2A.X. We did not observe any major changes in the amount of DNA-PK subunits Ku70/80 caused by the combination of NU7441 and radiation. Their combination led to an increased phosphorylation of H2A.X, a hallmark of DNA damage. However, it did not prevent up-regulation of neither p53 (and its phosphorylation at Ser 15 and 392) nor p21. We observed a decrease in the levels of anti-apoptotic Mcl-1, cdc25A phosphatase, cleavage of PARP and a significant increase in apoptosis in the group treated with combination. In conclusion, the combination of NU7441 with IR caused increased phosphorylation of H2A.X early after irradiation and subsequent induction of apoptosis. It was efficient in MOLT-4 cells in 10× lower concentration than the inhibitor NU7026. NU7441 proved as a potent radio-sensitizing agent, and it might provide a platform for development of new radio-sensitizers in radiotherapy.
Assuntos
Cromonas/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Leucemia/patologia , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Histonas/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fatores de TempoRESUMO
DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)-triggered by radiation-induced double strand breaks-is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells.
Assuntos
Raios gama , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Pirazinas/farmacologia , Radiossensibilizantes/farmacologia , Sulfonas/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiaçãoRESUMO
We compared the effects of inhibitors of kinases ATM (KU55933) and ATR (VE-821) (incubated for 30 min before irradiation) on the radiosensitization of human promyelocyte leukaemia cells (HL-60), lacking functional protein p53. VE-821 reduces phosphorylation of check-point kinase 1 at serine 345, and KU55933 reduces phosphorylation of check-point kinase 2 on threonine 68 as assayed 4 h after irradiation by the dose of 6 Gy. Within 24 h after gamma-irradiation with a dose of 3 Gy, the cells accumulated in the G2 phase (67 %) and the number of cells in S phase decreased. KU55933 (10 µM) did not affect the accumulation of cells in G2 phase and did not affect the decrease in the number of cells in S phase after irradiation. VE-821 (2 and 10 µM) reduced the number of irradiated cells in the G2 phase to the level of non-irradiated cells and increased the number of irradiated cells in S phase, compared to irradiated cells not treated with inhibitors. In the 144 h interval after irradiation with 3 Gy, there was a considerable induction of apoptosis in the VE-821 group (10 µM). The repair of the radiation damage, as observed 72 h after irradiation, was more rapid in the group exposed solely to irradiation and in the group treated with KU55933 (80 and 77 % of cells, respectively, were free of DSBs), whereas in the group incubated with 10 µM VE-821, there were only 61 % of cells free of DSBs. The inhibition of kinase ATR with its specific inhibitor VE-821 resulted in a more pronounced radiosensitizing effect in HL-60 cells as compared to the inhibition of kinase ATM with the inhibitor KU55933. In contrast to KU55933, the VE-821 treatment prevented HL-60 cells from undergoing G2 cell cycle arrest. Taken together, we conclude that the ATR kinase inhibition offers a new possibility of radiosensitization of tumour cells lacking functional protein p53.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Leucemia Promielocítica Aguda/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Sulfonas/farmacologia , Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HL-60 , Humanos , Morfolinas/farmacologia , Pironas/farmacologiaRESUMO
In the work presented here, changes in haematopoiesis of mice (B6129SF2/J) were studied 1 year after their whole-body exposure to a dose of 7 Gy (72% of mice survived). The irradiated mice were compared with non-irradiated younger (4 months of age) and older (16 months of age) mice. There was a significant increase in the relative abundance of primitive stem cells with long-term capability of the haematopoiesis recovery lin(-)/Sca-1(+)/CD117(+)/CD34(-) in the bone marrow of mice aged 16 months (irradiated and non-irradiated) compared with those aged 4 months. In terms of the ability to respond to further whole-body irradiation at a dose of 1 Gy, the presence of γH2A.X foci was studied in lin(-) bone marrow cells. There was a considerable number of persisting foci in lin(-) stem cells isolated from the bone marrow of the older irradiated mice. In the blood count from the peripheral blood of the older mice (both non-irradiated and irradiated at 7 Gy), there was a significant increase in granulocytes. In the group exposed to 7 Gy, the numbers of thrombocytes significantly increased, and on the contrary, the numbers of erythrocytes, the amount of haemoglobin, and haematocrit significantly decreased.
Assuntos
Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Fatores Etários , Animais , Plaquetas/metabolismo , Plaquetas/efeitos da radiação , Medula Óssea/efeitos da radiação , Linhagem Celular , Eritrócitos/metabolismo , Eritrócitos/efeitos da radiação , Feminino , Granulócitos/metabolismo , Granulócitos/efeitos da radiação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/efeitos da radiação , Histonas/metabolismo , Masculino , Camundongos , Irradiação Corporal Total/métodosRESUMO
In this paper we describe the influence of NU7026, a specific inhibitor of DNA-dependent protein kinase, phosphoinositide 3-kinase, and ATM-kinase on molecular and cellular mechanisms triggered by ionising irradiation in human T-lymphocyte leukaemic MOLT-4 cells. We studied the effect of this inhibitor (10 1microM) combined with gamma-radiation (1 Gy) leading to DNA damage response and induction of apoptosis. We used methods for apoptosis assessment (cell viability count and flow-cytometric analysis) and cell cycle analysis (DNA content measurement) and we detected expression and post-translational modifications (Western blotting) of proteins involved in DNA repair signalling pathways. Pre-treatment with NU7026 resulted into decreased activation of checkpoint kinase-2 (Thr68), p53 (Ser15 and Ser392), and histone H2A.X (Ser139) 2 hours after irradiation. Subsequently, combination of radiation and inhibitor led to decreased amount of cells in G2-phase arrest and into increased apoptosis after 72 hours. Our results indicate that in leukaemic cells the pre-incubation with inhibitor NU7026 followed by low doses of ionising radiation results in radio-sensitising of MOLT-4 cells via diminished DNA repair and delayed but pronounced apoptosis. This novel approach might offer new strategies in combined treatment of leukaemia diseases.
Assuntos
Cromonas/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Leucemia de Células T/radioterapia , Morfolinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Apoptose/efeitos da radiação , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral/efeitos da radiação , Proliferação de Células/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Raios gama , HumanosRESUMO
In this work we evaluated changes in molecular response of human promyelocyte leukemia cells HL-60 and HL-60-IR cells (HL-60 irradiated by 10 cycles of radiation with total dose of 60 Gy, given over a period of 3 months) to irradiation by the dose of 2 and 8 Gy. Analysis of CD11b and apoptosis by flow-cytometry revealed that on 3rd day after irradiation by 8 Gy the HL-60-IR are more resistant to radiation-induced apoptosis and more differentiated (increase in CD11b in non-apoptotic cells) than regular HL-60. We found that both types of cells have high basal level of phosphorylated extracellular signal-regulated kinases Erk1/2 . Irradiation induces decrease in Erk1/2 phosphorylation after 4 and 8 h in both cell types. However, in HL-60-IR cells Erk1/2 phosphorylation is restored faster than in HL-60. Also it was found that in contrary to HL-60 cells, the HL-60-IR cells react to 2 Gy irradiation by p53 independent increase in p21(WAF1/Cip1), and not by activation of checkpoint kinase Chk-2. Therefore we concluded that relatively high dose of radiation (6 Gy) does not lead after 10 repetitive irradiations to eradication of HL-60 cells, but instead increases their radioresistance, increases the ability to differentiate, alters MAPK response, increases amount of p21(WAF1/Cip1), and decreases induction of apoptosis by ionizing radiation. p21(WAF1/Cip1) might prevent apoptosis induction and trigger permanent cell-cycle arrest, which can also contribute to regression of this leukaemia after therapy.
Assuntos
Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/radioterapia , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Tolerância a Radiação/fisiologia , Apoptose/efeitos da radiação , Ciclo Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Raios gama/uso terapêutico , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/patologia , FosforilaçãoRESUMO
Ataxia-telangiectasia mutated kinase (ATM) is a DNA damage-inducible protein kinase, which phosphorylates plethora of substrates participating in DNA damage response. ATM significance for the cell faith is undeniable, since it regulates DNA repair, cell-cycle progress, and apoptosis. Here we describe its main signalling targets and discuss its importance in DNA repair as well as novel findings linked to this key regulatory enzyme in the terms of ionizing radiation-induced DNA damage.
Assuntos
Proteínas de Ciclo Celular/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologiaRESUMO
In this report, we describe the homing of hematopoietic stem cells (HSCs) to non-hematopoietic tissues in lethally irradiated (9Gy) hybrid mice transplanted intravenously with lin(-)/CD117(+) bone marrow cells from ROSA26 mice. The numbers of CFU-GM in spleen of irradiated transplanted mice were well above the levels found in non-irradiated group as early as day 8 after transplant. On 12th day regeneration of lymphocytes was observed, an increase in granulocytes was detected as late as on 33rd day. Transplanted cells containing lacZ gene were detected in recipient mice by histochemistry and their location in the thymus, liver, stomach and ileum was followed during 33days post-transplantation. On 8 and 33days post-transplantation, we found massive presence of donor (lacZ(+)) cells in the thymic cortex. Hematopoietic stem cell transplantation led not only to recovery of hematopoietic and lymphoid tissues but also facilitated recovery of the small intestinal mucosa, which was significantly damaged by ionizing radiation.
Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/fisiologia , Sistema Hematopoético/fisiologia , Tecido Linfoide/fisiologia , Proteínas Proto-Oncogênicas c-kit , Regeneração , Animais , Movimento Celular , Mucosa Intestinal/fisiologia , Intestino Delgado , Óperon Lac , Camundongos , Fatores de Tempo , Distribuição Tecidual , Irradiação Corporal TotalRESUMO
Replication stress (RS) is a major driver of genomic instability and tumorigenesis. Here, we investigated whether RS induced by the nucleotide analog fludarabine and specific kinase inhibitors [e.g. targeting checkpoint kinase 1 (Chk1) or ataxia telangiectasia and Rad3-related (ATR)] led to apoptosis or senescence in four cancer cell lines differing in TP53 mutation status and expression of lamin A/C (LA/C). RS resulted in uneven chromatin condensation in all cell types, as evidenced by the presence of metaphasic chromosomes with unrepaired DNA damage, as well as detection of less condensed chromatin in the same nucleus, frequent ultrafine anaphase bridges, and micronuclei. We observed that responses to these chromatin changes may be distinct in individual cell types, suggesting that expression of lamin A/C and lamin B1 (LB1) may play an important role in the transition of damaged cells to senescence. MCF7 mammary carcinoma cells harboring wild-type p53 (WT-p53) and LA/C responded to RS by transition to senescence with a significant reduction of lamin B receptor and LB1 proteins. In contrast, a lymphoid cancer cell line WSU-NHL (WT-p53) lacking LA/C and expressing low levels of LB1 died after several hours, while lines MEC-1 and SU-DHL-4, both with mutated p53, and SU-DHL-4 with mutations in LA/C, died at different rates by apoptosis. Our results show that, in addition to being influenced by p53 mutation status, the response to RS (apoptosis or senescence) may also be influenced by lamin A/C and LB1 status.
Assuntos
Apoptose/fisiologia , Senescência Celular/fisiologia , Replicação do DNA/fisiologia , Linhagem Celular Tumoral , Humanos , Lamina Tipo A/metabolismo , Células MCF-7 , Mutação , Proteína Supressora de Tumor p53/genética , Vidarabina/análogos & derivados , Vidarabina/farmacologiaRESUMO
The increasing risk of acute large-scale exposure of ionising irradiation on the population underlines the necessity of developing effective radioprotective and mitigating agents. The aim of this work was to investigate the effect of sodium orthovanadate pre-treatment on mice exposed to high doses of gamma rays (from 5 to 13 Gy). The determination of median lethal dose within 30 days confirmed that orthovanadate applied to total-body-irradiated mice intra-peritoneally has a radioprotective but not a mitigating effect. With orthovanadate pre-treatment, the composition of cellularity in the bone marrow improved substantially and the main lymphocyte populations restored during the first month after irradiation. These findings contribute to 'gap-filling' in radioprotective effects and demonstrate the importance of haematological parameters in radiation-response prediction.
Assuntos
Protetores contra Radiação/farmacologia , Vanadatos/farmacologia , Irradiação Corporal Total , Animais , Linfócitos B/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citometria de Fluxo , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Radiação Ionizante , Linfócitos T/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismoRESUMO
Mutations in NBS1 gene are related to higher occurrence of malignancies. In this work we studied response of T-lymphocyte leukemia cells MOLT-4 to ionizing radiation. We detected IRIF (ionizing radiation forming foci) containing histone gammaH2A.X, protein 53BP1, and Nbs1, which were formed around double-strand breaks of DNA. We found dose-dependent increase in foci number (colocalization of gammaH2A.X and 53BP1) and gammaH2A.X amount (integral optical density) 1h after irradiation. After the dose of 1.5 Gy the number of foci decreases with time, but 72 h after irradiation 9% of live cells still contained big foci around unrepaired DNA damage. Western blot method revealed massive phosphorylation of H2A.X during apoptosis induction, 6-24 h after irradiation by the doses 1.5 and 3 Gy. Cells with apoptotic morphology showed strong phosphorylation of H2A.X, but it was not accompanied by 53BP1. 1h after irradiation by the lethal doses 5 and 10 Gy we detected by Western blot a decrease in repair proteins Mre11, Rad50, and Nbs1. While phosphorylation of H2A.X 1h after irradiation was detected by both confocal microscopy and Western blot, phosphorylation of Nbs1 on serine 343 was not detectable in MOLT-4 cells. Despite functional ATM and p53 the phosphorylation of Nbs1 on serine 343 was impaired in these cells, and might be responsible for high radiosensitivity of MOLT-4 cells.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Leucemia de Células T/metabolismo , Leucemia de Células T/radioterapia , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Relação Dose-Resposta à Radiação , Humanos , Fosforilação , Tolerância a RadiaçãoRESUMO
The main aim of this study was to compare the reaction of quiescent and proliferating, i.e. phytohemagglutinin (PHA)-stimulated, human peripheral blood mononuclear cells (PBMCs) to gamma-radiation, and analyse changes of proteins related to repair of DNA damage and apoptosis, such as gammaH2A.X, p53, p53 phosphorylation at serines-15 and -392, and p21 and their dose dependence. Freshly isolated PBMCs in peripheral blood are predominantly quiescent, in G(0) phase, and with very low amounts of proteins p53 and p21. Using confocal microscopy we detected dose dependent (0.5-5 Gy) induction of foci containing gammaH2A.X (1 h after gamma-ray exposure), which are formed around radiation-induced double strand breaks of DNA. Apoptosis was detected from 24 h after irradiation by the dose of 4 Gy onwards by Annexin V binding and lamin B cleavage. Seventy two hours after irradiation 70% of CD3(+) lymphocytes were A(+). Neither increase in p53 nor its phosphorylation on serine-392 after irradiation was detected in these cells. However, massive increase in p21 (cyclin-dependent kinase inhibitor 1A) was detected after irradiation, which can be responsible for late occurrence of apoptosis in these quiescent cells. PHA-stimulation itself (72 h) caused an increase in early apoptosis (A(+)PI(-)) in comparison to non-stimulated PBMCs (38% A(+) resp. 13.4%). After PHA-stimulation also the amount of gammaH2A.X, p53, and p21 increased, but no phosphorylation of p53 on serine-392 or -15 was detected. Reaction to gamma-radiation was different in PHA-stimulated lymphocytes: the p53 pathway was activated and p53 was phosphorylated on serines-15 and -392 4 h after irradiation by the dose of 4 Gy. Phosphorylation of p53 at serine-15 increased in a dose-dependent manner in the studied dose range 0.2-7.5 Gy. Also the amount of p21 increased after irradiation. Seventy two hours after irradiation of PHA-stimulated CD3(+) T lymphocytes by the dose of 4 Gy 65% of cells were A(+).
Assuntos
Histonas/metabolismo , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos da radiação , Dano ao DNA , Relação Dose-Resposta à Radiação , Raios gama , Histonas/química , Humanos , Técnicas In Vitro , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Fosforilação , Fito-Hemaglutininas/farmacologia , Proteína Supressora de Tumor p53/químicaRESUMO
PURPOSE: The purpose of our study is to examine phospho-ATF-2(Thr-69/71) (phospho-activating transcription factor-2, p-ATF-2), phospho-CREB(Ser-133) (phospho-cAMP response binding element protein, p-CREB), and phospho-c-Myc(Thr-58/Ser-62) (phosho-myelocytomatosis protooncogene, p-c-Myc) expression in irradiated rat colon transversum. MATERIALS AND METHODS: Male Wistar rats were randomly divided to 28 groups and irradiated with whole-body gamma-radiation of 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 Gy. Samples were taken 4 and 24 hours after the irradiation, immunohistochemically stained. P-ATF-2, p-CREB, and p-c-Myc expression was measured. RESULTS: We measured increased cytoplasmatic p-ATF-2 expression 4 hours after irradiation by 0.25 - 1, 10 Gy and 24 hours after irradiation by 0.5 - 1, 10 Gy. Increased cytoplasmatic p-CREB expression was found 4 hours after irradiation by 0.25 - 1, 9, 10 Gy and 24 hours after irradiation by 0.25 - 1, 4, 10 Gy. Increased p-c-Myc cytoplasmatic expression was found 4 hours after irradiation by 0.25, 0.75, 4, 5 Gy and 24 hours after irradiation by 0.75, 1, 10 Gy. Nuclear p-ATF-2, p-CREB, and p-c-Myc expressions were similar to their cytoplasmatic expressions. CONCLUSION: The detection of p-ATF-2 and p-CREB might be considered as a perspective biodosimetric tool for irradiated enterocytes in vivo. The use of p-c-Myc appears to be controversial due to the ambivalent expression values.
Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Bioensaio/métodos , Colo/metabolismo , Colo/efeitos da radiação , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Contagem Corporal Total/métodos , Irradiação Corporal Total , Animais , Carga Corporal (Radioterapia) , Raios gama , Expressão Gênica/efeitos da radiação , Masculino , Ratos , Ratos Wistar , Eficiência Biológica RelativaRESUMO
PURPOSE: Apoptosis is significantly controlled by proteins of Bcl-2 (B-cell lymphoma 2) family promoting cell death or maintaining cell survival. We selected two representatives of Bcl-2 family (anti-apoptotic Mcl-1 - myeloid cell line-1 and pro-apoptotic Bid - Bcl-2 homology domain 3 interacting death agonist), cytochrome c (cyt-c), and two initial caspases (-8 and -9) to evaluate their function in ionizing radiation (IR)-induced apoptosis in human leukaemic cell lines diverging in p53 (TP53 tumor suppressor gene) status. MATERIALS AND METHODS: A total of 30 microg of proteins of whole-cell lysates or 10 microg of mitochondrial protein fractions were electrophoretically separated and analyzed by Western-blotting. RESULTS: Here we show that in both HL-60 (p53 null) and MOLT-4 (p53 wild type) leukaemic cells the amount of Mcl-1 initially increased after irradiation by sublethal but not by lethal dose and later (when apoptosis occurred) it decreased in a dose-dependent manner. Caspase-8 was cleaved and afterwards the amount of Bid decreased as it was truncated. We also found cyt-c release from the inner mitochondrial membrane space into cytoplasm to be dose-dependent and it was followed by induction of apoptosis. In the p53-null cells caspase-8 was activated prior caspase-9, whereas the cells harboring p53 exhibited a simultaneous activation of both initial caspases. CONCLUSION: IR induced a decrease in Mcl-1, activation of Bid, caspase-8, and -9, and release of cyt-c. Presented data indicate that both extrinsic and intrinsic apoptosis signalling pathways were activated in HL-60 and MOLT-4 cells upon exposure to IR regardless to the p53 status.
Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Raios gama/efeitos adversos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Linhagem Celular Tumoral , Ativação Enzimática/efeitos da radiação , Humanos , Proteína de Sequência 1 de Leucemia de Células MieloidesRESUMO
One of perspective approaches in treatment of hematological malignancies is activation of death receptors for TRAIL. However, leukemia cells studied to date have shown variable susceptibility to TRAIL. Our study demonstrates that cells of acute T-lymphoblastic leukemia MOLT-4 are resistant to TRAIL and that ionizing radiation in the therapeutically achievable dose of 1 Gy sensitizes TRAIL-resistant cells MOLT-4 to the TRAIL-induced apoptosis by increase in death receptors for TRAIL DR5. When TRAIL is applied after the irradiation in the time of increased DR5 positivity more efficient cell killing is achieved.
Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Leucemia/patologia , Tolerância a Radiação/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Raios gama , Humanos , Leucemia/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/efeitos da radiaçãoRESUMO
Experiments presented here were aimed at the description of hematopoiesis repair and in vivo homing of transplanted separated CD117+B220- bone marrow cells after whole-body lethal irradiation at LD 9Gy. ROSA 26 mice were used as donors of marrow cells for transplantation [B6;129S/Gt (ROSA)26Sor] and were tagged with lacZ gene, and F2 hybrid mice [B6129SF2/J] were used as recipients of bone marrow transplanted cells. Hematopoiesis repair was provided by transplantation, both suspension of whole bone marrow cells (5x106) and isolated CD117+B220- cells (5x10(4)). Mice survived up to thirty days after irradiation. We demonstrated that transplantation of suspension of whole bone marrow cells led to faster recovery of CFU-GM (Granulocyte-macrophage colony forming units) in bone marrow and in the spleen too. It is not clear what the share of residential and transplanted cells is in the repair process. Our results demonstrate that sufficient hematopoietic repair occurs after transplantation of CD117+B220- (lacZ+) in lethally irradiated mice, and the difference in CFU-GM numbers in the bone marrow and spleen found on day 8 posttransplant has no influence on the survival of lethally irradiated mice (30 days follow-up).