RESUMO
Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at â¼450 000 cytosine-phosphate-guanine (CpG) sites in 9732 middle-aged to older adults from 14 community-based studies. Single CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5) and co-localized with FOLH1 expression in brain (posterior probability = 0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis and multi-omics co-localization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug-repositioning analysis indicated antihyperlipidaemic agents, more specifically peroxisome proliferator-activated receptor-alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood-brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidaemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood-brain barrier disruption.
Assuntos
Substância Branca , Pessoa de Meia-Idade , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Estudo de Associação Genômica Ampla/métodos , Encéfalo/diagnóstico por imagem , Metilação de DNA/genética , Imageamento por Ressonância Magnética , Epigênese Genética , Proteína-Arginina N-Metiltransferases , Proteínas RepressorasRESUMO
BACKGROUND: Cerebrovascular reactivity (CVR) is inversely related to white matter hyperintensity severity, a marker of cerebral small vessel disease (SVD). Less is known about the relationship between CVR and other SVD imaging features or cognition. We aimed to investigate these cross-sectional relationships. METHODS: Between 2018 and 2021 in Edinburgh, we recruited patients presenting with lacunar or cortical ischemic stroke, whom we characterized for SVD features. We measured CVR in subcortical gray matter, normal-appearing white matter, and white matter hyperintensity using 3T magnetic resonance imaging. We assessed cognition using Montreal Cognitive Assessment. Statistical analyses included linear regression models with CVR as outcome, adjusted for age, sex, and vascular risk factors. We reported regression coefficients with 95% CIs. RESULTS: Of 208 patients, 182 had processable CVR data sets (median age, 68.2 years; 68% men). Although the strength of association depended on tissue type, lower CVR in normal-appearing tissues and white matter hyperintensity was associated with larger white matter hyperintensity volume (BNAWM=-0.0073 [95% CI, -0.0133 to -0.0014] %/mm Hg per 10-fold increase in percentage intracranial volume), more lacunes (BNAWM=-0.00129 [95% CI, -0.00215 to -0.00043] %/mm Hg per lacune), more microbleeds (BNAWM=-0.00083 [95% CI, -0.00130 to -0.00036] %/mm Hg per microbleed), higher deep atrophy score (BNAWM=-0.00218 [95% CI, -0.00417 to -0.00020] %/mm Hg per score point increase), higher perivascular space score (BNAWM=-0.0034 [95% CI, -0.0066 to -0.0002] %/mm Hg per score point increase in basal ganglia), and higher SVD score (BNAWM=-0.0048 [95% CI, -0.0075 to -0.0021] %/mm Hg per score point increase). Lower CVR in normal-appearing tissues was related to lower Montreal Cognitive Assessment without reaching convention statistical significance (BNAWM=0.00065 [95% CI, -0.00007 to 0.00137] %/mm Hg per score point increase). CONCLUSIONS: Lower CVR in patients with SVD was related to more severe SVD burden and worse cognition in this cross-sectional analysis. Longitudinal analysis will help determine whether lower CVR predicts worsening SVD severity or vice versa. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: ISRCTN12113543.
Assuntos
Doenças de Pequenos Vasos Cerebrais , Substância Branca , Masculino , Humanos , Idoso , Feminino , Estudos Transversais , Doenças de Pequenos Vasos Cerebrais/complicações , Imageamento por Ressonância Magnética/métodos , Cognição , Substância Branca/patologiaRESUMO
Multi-scanner MRI studies are reliant on understanding the apparent differences in imaging measures between different scanners. We provide a comprehensive analysis of T1 -weighted and diffusion MRI (dMRI) structural brain measures between a 1.5 T GE Signa Horizon HDx and a 3 T Siemens Magnetom Prisma using 91 community-dwelling older participants (aged 82 years). Although we found considerable differences in absolute measurements (global tissue volumes were measured as ~6-11% higher and fractional anisotropy [FA] was 33% higher at 3 T than at 1.5 T), between-scanner consistency was good to excellent for global volumetric and dMRI measures (intraclass correlation coefficient [ICC] range: .612-.993) and fair to good for 68 cortical regions (FreeSurfer) and cortical surface measures (mean ICC: .504-.763). Between-scanner consistency was fair for dMRI measures of 12 major white matter tracts (mean ICC: .475-.564), and the general factors of these tracts provided excellent consistency (ICC ≥ .769). Whole-brain structural networks provided good to excellent consistency for global metrics (ICC ≥ .612). Although consistency was poor for individual network connections (mean ICCs: .275-.280), this was driven by a large difference in network sparsity (.599 vs. .334), and consistency was improved when comparing only the connections present in every participant (mean ICCs: .533-.647). Regression-based k-fold cross-validation showed that, particularly for global volumes, between-scanner differences could be largely eliminated (R2 range .615-.991). We conclude that low granularity measures of brain structure can be reliably matched between the scanners tested, but caution is warranted when combining high granularity information from different scanners.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Idoso de 80 Anos ou mais , Coorte de Nascimento , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/normas , Masculino , Neuroimagem/instrumentação , Neuroimagem/normas , EscóciaRESUMO
PURPOSE: Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS: Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B1+ error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B1+ correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS: Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION: Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Barreira Hematoencefálica/diagnóstico por imagem , Meios de Contraste , Humanos , Imageamento por Ressonância MagnéticaRESUMO
OBJECTIVE: To determine whether the presence of diffusion-weighted imaging-positive (DWI+) lesions is associated with recurrent stroke after intracerebral haemorrhage (ICH). METHODS: The REstart or STop Antithrombotics Randomised Trial (RESTART) assessed the effect of restarting versus avoiding antiplatelet therapy after ICH on major vascular events for up to 5 years. We rated DWI sequences of MRI done before randomisation for DWI+ lesion presence, masked to outcome and antiplatelet use. Cox proportional hazards regression models were used to quantify associations. RESULTS: Of 537 participants in RESTART, 247 (median (IQR) age 75.7 (69.6-81.1) years; 170 men (68.8%); 120 started vs 127 avoided antiplatelet therapy) had DWI sequences on brain MRI at a median of 57 days (IQR 19-103) after ICH, of whom 73 (30%) had one or more DWI+ lesion. During a median follow-up of 2 years (1-3), 18 participants had recurrent ICH and 21 had ischaemic stroke. DWI+ lesion presence was associated with all stroke, (adjusted HR 2.2 (95% CI 1.1 to 4.2)) and recurrent ICH (4.8 (95% CI 1.8 to 13.2)), but not ischaemic stroke (0.9 (95% CI 0.3 to 2.5)). DWI+ lesion presence (0.5 (95% CI 0.2 to 1.3)) vs absence (0.6 (95% CI 0.3 to 1.5), pinteraction=0.66) did not modify the effect of antiplatelet therapy on a composite outcome of recurrent stroke. CONCLUSIONS: DWI+ lesion presence in ICH survivors is associated with recurrent ICH, but not with ischaemic stroke. We found no evidence of modification of effects of antiplatelet therapy on recurrent stroke after ICH by DWI+ lesion presence. These findings provide a new perspective on the significance of DWI+ lesions, which may be markers of microvascular mechanisms associated with recurrent ICH. TRIAL REGISTRATION NUMBER: ISRCTN71907627.
Assuntos
Encéfalo/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Neuroimagem , Recidiva , RiscoRESUMO
Background and Purpose- Perivascular spaces (PVS) around venules may help drain interstitial fluid from the brain. We examined relationships between suspected venules and PVS visible on brain magnetic resonance imaging. Methods- We developed a visual venular quantification method to examine the spatial relationship between venules and PVS. We recruited patients with lacunar stroke or minor nondisabling ischemic stroke and performed brain magnetic resonance imaging and retinal imaging. We quantified venules on gradient echo or susceptibility-weighted imaging and PVS on T2-weighted magnetic resonance imaging in the centrum semiovale and then determined overlap between venules and PVS. We assessed associations between venular count and patient demographic characteristics, vascular risk factors, small vessel disease features, retinal vessels, and venous sinus pulsatility. Results- Among 67 patients (69% men, 69.0±9.8 years), only 4.6% (range, 0%-18%) of venules overlapped with PVS. Total venular count increased with total centrum semiovale PVS count in 55 patients after accounting for venule-PVS overlap (ß=0.468 [95% CI, 0.187-0.750]) and transverse sinus pulsatility (ß=0.547 [95% CI, 0.309-0.786]) and adjusting for age, sex, and systolic blood pressure. Conclusions- Despite increases in both visible PVS and suspected venules, we found minimal spatial overlap between them in patients with sporadic small vessel disease, suggesting that most magnetic resonance imaging-visible centrum semiovale PVS are periarteriolar rather than perivenular.
Assuntos
Encéfalo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Vênulas/diagnóstico por imagem , Idoso , Isquemia Encefálica/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral Lacunar/diagnóstico por imagem , Seios TransversosRESUMO
Fluctuating body asymmetry is theorized to indicate developmental instability, and to have small positive associations with low socioeconomic status (SES). Previous studies have reported small negative associations between fluctuating body asymmetry and cognitive functioning, but relationships between fluctuating brain asymmetry and cognitive functioning remain unclear. The present study investigated the association between general intelligence (a latent factor derived from a factor analysis on 13 cognitive tests) and the fluctuating asymmetry of four structural measures of brain hemispheric asymmetry: cortical surface area, cortical volume, cortical thickness, and white matter fractional anisotropy. The sample comprised members of the Lothian Birth Cohort 1936 (LBC1936, Nâ¯=â¯636, mean ageâ¯=â¯72.9â¯years). Two methods were used to calculate structural hemispheric asymmetry: in the first method, regions contributed equally to the overall asymmetry score; in the second method, regions contributed proportionally to their size. When regions contributed equally, cortical thickness asymmetry was negatively associated with general intelligence (ßâ¯=â¯-0.18,pâ¯<â¯.001). There was no association between cortical thickness asymmetry and childhood SES, suggesting that other mechanisms are involved in the thickness asymmetry-intelligence association. Across all cortical metrics, asymmetry of regions identified by the parieto-frontal integration theory (P-FIT) was not more strongly associated with general intelligence than non-P-FIT asymmetry. When regions contributed proportionally, there were no associations between general intelligence and any of the asymmetry measures. The implications of these findings, and of different methods of calculating structural hemispheric asymmetry, are discussed.
RESUMO
The structural network of the human brain has a rich topology which many have sought to characterise using standard network science measures and concepts. However, this characterisation remains incomplete and the non-obvious features of this topology have largely confounded attempts towards comprehensive constructive modelling. This calls for new perspectives. Hierarchical complexity is an emerging paradigm of complex network topology based on the observation that complex systems are composed of hierarchies within which the roles of hierarchically equivalent nodes display highly variable connectivity patterns. Here we test the hierarchical complexity of the human structural connectomes of a group of seventy-nine healthy adults. Binary connectomes are found to be more hierarchically complex than three benchmark random network models. This provides a new key description of brain structure, revealing a rich diversity of connectivity patterns within hierarchically equivalent nodes. Dividing the connectomes into four tiers based on degree magnitudes indicates that the most complex nodes are neither those with the highest nor lowest degrees but are instead found in the middle tiers. Spatial mapping of the brain regions in each hierarchical tier reveals consistency with the current anatomical, functional and neuropsychological knowledge of the human brain. The most complex tier (Tier 3) involves regions believed to bridge high-order cognitive (Tier 1) and low-order sensorimotor processing (Tier 2). We then show that such diversity of connectivity patterns aligns with the diversity of functional roles played out across the brain, demonstrating that hierarchical complexity can characterise functional diversity strictly from the network topology.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologiaRESUMO
A protocol for evaluating ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake and elimination in cerebral small vessel disease patients was developed and piloted. B1-insensitive R1 measurement was evaluated in vitro. Twelve participants with history of minor stroke were scanned at 3-T MRI including structural imaging, and R1 and R2* mapping. Participants were scanned (i) before and (ii) after USPIO (ferumoxytol) infusion, and again at (iii) 24â»30 h and (iv) one month. Absolute and blood-normalised changes in R1 and R2* were measured in white matter (WM), deep grey matter (GM), white matter hyperintensity (WMH) and stroke lesion regions. R1 measurements were accurate across a wide range of values. R1 (p < 0.05) and R2* (p < 0.01) mapping detected increases in relaxation rate in all tissues immediately post-USPIO and at 24â»30 h. R2* returned to baseline at one month. Blood-normalised R1 and R2* changes post-infusion and at 24â»30 h were similar, and were greater in GM versus WM (p < 0.001). Narrower distributions were seen with R2* than for R1 mapping. R1 and R2* changes were correlated at 24â»30 h (p < 0.01). MRI relaxometry permits quantitative evaluation of USPIO uptake; R2* appears to be more sensitive to USPIO than R1. Our data are explained by intravascular uptake alone, yielding estimates of cerebral blood volume, and did not support parenchymal uptake. Ferumoxytol appears to be eliminated at 1 month. The approach should be valuable in future studies to quantify both blood-pool USPIO and parenchymal uptake associated with inflammatory cells or blood-brain barrier leak.
Assuntos
Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Compostos Férricos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Idoso , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Estudos de Avaliação como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , MasculinoRESUMO
Cerebral grey and white matter MRI parameters are related to general intelligence and some specific cognitive abilities. Less is known about how structural brain measures relate specifically to verbal processing abilities. We used multi-modal structural MRI to investigate the grey matter (GM) and white matter (WM) correlates of verbal ability in 556 healthy older adults (mean age = 72.68 years, s.d. = .72 years). Structural equation modelling was used to decompose verbal performance into two latent factors: a storage factor that indexed participants' ability to store representations of verbal knowledge and an executive factor that measured their ability to regulate their access to this information in a flexible and task-appropriate manner. GM volumes and WM fractional anisotropy (FA) for components of the language/semantic network were used as predictors of these verbal ability factors. Volume of the ventral temporal cortices predicted participants' storage scores (ß = .12, FDR-adjusted p = .04), consistent with the theory that this region acts as a key substrate of semantic knowledge. This effect was mediated by childhood IQ, suggesting a lifelong association between ventral temporal volume and verbal knowledge, rather than an effect of cognitive decline in later life. Executive ability was predicted by FA fractional anisotropy of the arcuate fasciculus (ß = .19, FDR-adjusted p = .001), a major language-related tract implicated in speech production. This result suggests that this tract plays a role in the controlled retrieval of word knowledge during speech. At a more general level, these data highlight a basic distinction between information representation, which relies on the accumulation of tissue in specialised GM regions, and executive control, which depends on long-range WM pathways for efficient communication across distributed cortical networks.
Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Função Executiva/fisiologia , Substância Cinzenta/fisiologia , Comportamento Verbal/fisiologia , Substância Branca/fisiologia , Idoso , Envelhecimento/patologia , Encéfalo/anatomia & histologia , Estudos de Coortes , Feminino , Substância Cinzenta/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Semântica , Substância Branca/anatomia & histologiaRESUMO
Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing.
Assuntos
Envelhecimento/patologia , Gânglios da Base/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Estudos de Coortes , Feminino , Humanos , MasculinoRESUMO
BACKGROUND: The cause of lacunar ischemic stroke, a clinical feature of cerebral small vessel disease (SVD), is largely unknown. Inflammation and endothelial dysfunction have been implicated. Plasma biomarkers could provide mechanistic insights but current data are conflicting. White matter hyperintensities (WMHs) are an important imaging biomarker of SVD. It is unknown if plasma biomarkers add predictive capacity beyond age and vascular risk factors in explaining WMH. METHODS: We prospectively recruited patients presenting with non-disabling ischemic stroke, classifying them clinically and with the help of MRI as lacunar or cortical. We measured biomarkers of inflammation, endothelial dysfunction and hemostasis for >1 month after stroke and compared biomarker levels between stroke subtypes. We quantitatively calculated WMH. We used multiple linear regression analysis to model WMH as a function of age, sex, hypertension and smoking (the baseline model). We fitted exploratory models using plasma biomarkers as predictor variables to assess model improvement over baseline. RESULTS: We recruited 125 patients. The lacunar group (n = 65) had lower tissue plasminogen activator (t-PA) levels in unadjusted (7.39 vs. 8.59 ng/ml, p = 0.029) and adjusted (p = 0.035) analyses compared with the cortical group (n = 60). There were no significant differences in the other plasma biomarkers. The results for t-PA were consistent with an updated meta-analysis, although the effect remains non-significant (standardized mean difference -0.08 (95% CI -0.25 to 0.09)). The baseline regression model explained 29% of the variance in quantitative WMH (R2 0.289). Inflammatory biomarkers showed minor improvement over baseline (R2 0.291), but the other plasma biomarkers did not improve the baseline model. CONCLUSION: Plasma t-PA levels appear to differ between lacunar and cortical stroke subtypes, late after stroke, independent of age, sex and vascular risk factors and may reflect endothelial dysfunction. Except for a minor additional predictive effect of inflammatory markers, plasma biomarkers do not relate to WMH severity in this small stroke population.
Assuntos
Doenças de Pequenos Vasos Cerebrais/diagnóstico , Doenças de Pequenos Vasos Cerebrais/metabolismo , Endotélio/fisiopatologia , Hemostasia/fisiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Feminino , Humanos , Inflamação/diagnóstico , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Substância Branca/metabolismoRESUMO
BACKGROUND AND PURPOSE: White matter hyperintensities (WMH) and perivascular spaces (PVS) are features of small vessel disease, found jointly on MRI of older people. Inflammation is a prominent pathological feature of small vessel disease. We examined the association between inflammation, PVS, and WMH in the Lothian Birth Cohort 1936 (N=634). METHODS: We measured plasma fibrinogen, C-reactive protein, and interleukin-6 and rated PVS in 3 brain regions. We measured WMH volumetrically and visually using the Fazekas scale. We derived latent variables for PVS, WMH, and Inflammation from measured PVS, WMH, and inflammation markers and modelled associations using structural equation modelling. RESULTS: After accounting for age, sex, stroke, and vascular risk factors, PVS were significantly associated with WMH (ß=0.47; P<0.0001); Inflammation was weakly but significantly associated with PVS (ß=0.12; P=0.048), but not with WMH (ß=0.02; P=NS). CONCLUSIONS: Circulating inflammatory markers are weakly associated with MR-visible PVS, but not directly with WMH. Longitudinal studies should examine whether visible PVS predate WMH progression and whether inflammation modulators can prevent small vessel disease.
Assuntos
Biomarcadores/sangue , Encéfalo/patologia , Doenças de Pequenos Vasos Cerebrais/sangue , Doenças de Pequenos Vasos Cerebrais/patologia , Inflamação/sangue , Idoso , Algoritmos , Proteína C-Reativa/análise , Estudos de Coortes , Feminino , Fibrinogênio/análise , Humanos , Processamento de Imagem Assistida por Computador , Interleucina-6/sangue , Imageamento por Ressonância Magnética , MasculinoRESUMO
BACKGROUND: intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. OBJECTIVE: we investigated the effect that thickening might have on the associations between brain atrophy and cognition. METHODS: the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. RESULTS: all cognitive ability variables were significantly (P < 0.01) associated with percentage total brain volume in ICV measured without adjusting for skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. CONCLUSIONS: not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect.
Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Cognição , Crânio/patologia , Fatores Etários , Idoso , Atrofia , Criança , Função Executiva , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Memória , Testes Neuropsicológicos , Tamanho do Órgão , Valor Preditivo dos Testes , Análise de Componente Principal , Fatores de TempoRESUMO
Multifocal T2*-weighted (T2*w) hypointensities in the basal ganglia, which are believed to arise predominantly from mineralized small vessels and perivascular spaces, have been proposed as a biomarker for cerebral small vessel disease. This study provides baseline data on their appearance on conventional structural MRI for improving and automating current manual segmentation methods. Using a published thresholding method, multifocal T2*w hypointensities were manually segmented from whole brain T2*w volumes acquired from 98 community-dwelling subjects in their early 70s. Connected component analysis was used to derive the average T2*w hypointensity count and load per basal ganglia nucleus, as well as the morphology of their connected components, while nonlinear spatial probability mapping yielded their spatial distribution. T1-weighted (T1w), T2-weighted (T2w) and T2*w intensity distributions of basal ganglia T2*w hypointensities and their appearance on T1w and T2w MRI were investigated to gain further insights into the underlying tissue composition. In 75/98 subjects, on average, 3 T2*w hypointensities with a median total volume per intracranial volume of 50.3ppm were located in and around the globus pallidus. Individual hypointensities appeared smooth and spherical with a median volume of 12mm(3) and median in-plane area of 4mm(2). Spatial probability maps suggested an association between T2*w hypointensities and the point of entry of lenticulostriate arterioles into the brain parenchyma. T1w and T2w and especially the T2*w intensity distributions of these hypointensities, which were negatively skewed, were generally not normally distributed indicating an underlying inhomogeneous tissue structure. Globus pallidus T2*w hypointensities tended to appear hypo- and isointense on T1w and T2w MRI, whereas those from other structures appeared iso- and hypointense. This pattern could be explained by an increased mineralization of the globus pallidus. In conclusion, the characteristic spatial distribution and appearance of multifocal basal ganglia T2*w hypointensities in our elderly cohort on structural MRI appear to support the suggested association with mineralized proximal lenticulostriate arterioles and perivascular spaces.
Assuntos
Envelhecimento/patologia , Gânglios da Base/patologia , Idoso , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , MasculinoRESUMO
OBJECTIVE: Cerebral atrophy and white matter lesions (WMLs) are common in older people with common risk factors, but it is unclear if they are related. We investigated whether and to what degree they are related in deep and superficial structures using both volumetric and visual ratings. METHODS: The intracranial, total brain tissue (TBV), cerebrospinal fluid (CSF), ventricular superficial subarachnoid space (SSS), grey matter, normal-appearing white matter, WMLs, and combined CSF, venous sinuses and dural volumes were measured. WMLs were also rated using the Fazekas scale. RESULTS: Amongst 672 adults (mean age 73 ± 1 years), WMLs were associated with global brain atrophy (TBV, ß = -0.43 mm(3), P < 0.01) and specifically with deep (ventricular enlargement, ß = 0.10 mm(3), P = 0.03) rather than superficial (SSS, ß = 0.09 mm(3), P = 0.55) atrophy. A 1 mm(3) increase in WML volume was associated with a 0.43 mm(3) decrease in TBV and 0.10 mm(3) increase in ventricular volume. WMLs were associated with combined CSF + Venous Sinuses + Meninges volumes, but not CSF volume alone. Some of the associations were attenuated after correcting for vascular risk factors. The associations were similar for visually scored WMLs. CONCLUSION: WMLs are associated with brain atrophy, primarily with deep brain structures. Measures of brain atrophy should include all intracranial structures when assessing brain shrinkage.
Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/estatística & dados numéricos , Fibras Nervosas Mielinizadas/patologia , Distribuição por Idade , Idoso , Atrofia/patologia , Estudos de Coortes , Feminino , Humanos , Masculino , Prevalência , Fatores de Risco , Reino Unido/epidemiologiaRESUMO
OBJECTIVE: It is unclear whether atlas-based parcellation is suitable in aging cohorts because age-related brain changes confound the performance of automatic methods. We assessed atlas-based parcellation of the prefrontal lobe in an aging population using visual assessment and volumetric and spatial concordance. METHODS: We used an atlas-based approach to parcellate brain MR images of 90 non-demented healthy adults, aged 72.7 ± 0.7 years, and assessed performance. RESULTS: Volumetric assessment showed that both single-atlas- and multi-atlas-based methods performed acceptably (intraclass correlation coefficient [ICC], 0.74-0.76). Spatial overlap measurements showed that multi-atlas (dice coefficient [DC], 0.84) offered an improvement over the single-atlas (DC, 0.75-0.78) approach. Visual assessment also showed that multi-atlas outperformed single atlas and identified an additional postprocessing step of cerebrospinal fluid removal, enhancing concordance (intraclass correlation coefficient, 0.86; DC, 0.89). CONCLUSIONS: Atlas-based parcellation performed reasonably well in the aging population. Rigorous performance assessment aided method refinement and emphasizes the importance of age matching and postprocessing. Further work is required in more varied subjects.
Assuntos
Envelhecimento/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/anatomia & histologia , Idoso , Estudos de Coortes , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Reprodutibilidade dos Testes , EscóciaRESUMO
OBJECTIVE: MRI at 3 T is said to be more accurate than 1.5 T MR, but costs and other practical differences mean that it is unclear which to use. METHODS: We systematically reviewed studies comparing diagnostic accuracy at 3 T with 1.5 T. We searched MEDLINE, EMBASE and other sources from 1 January 2000 to 22 October 2010 for studies comparing diagnostic accuracy at 1.5 and 3 T in human neuroimaging. We extracted data on methodology, quality criteria, technical factors, subjects, signal-to-noise, diagnostic accuracy and errors according to QUADAS and STARD criteria. RESULTS: Amongst 150 studies (4,500 subjects), most were tiny, compared old 1.5 T with new 3 T technology, and only 22 (15 %) described diagnostic accuracy. The 3 T images were often described as "crisper", but we found little evidence of improved diagnosis. Improvements were limited to research applications [functional MRI (fMRI), spectroscopy, automated lesion detection]. Theoretical doubling of the signal-to-noise ratio was not confirmed, mostly being 25 %. Artefacts were worse and acquisitions took slightly longer at 3 T. CONCLUSION: Objective evidence to guide MRI purchasing decisions and routine diagnostic use is lacking. Rigorous evaluation accuracy and practicalities of diagnostic imaging technologies should be the routine, as for pharmacological interventions, to improve effectiveness of healthcare. KEY POINTS : ⢠Higher field strength MRI may improve image quality and diagnostic accuracy. ⢠There are few direct comparisons of 1.5 and 3 T MRI. ⢠Theoretical doubling of the signal-to-noise ratio in practice was only 25 %. ⢠Objective evidence of improved routine clinical diagnosis is lacking. ⢠Other aspects of technology improved images more than field strength.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Pesquisa Biomédica/tendências , Diagnóstico por Imagem/métodos , Humanos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/patologia , Neoplasias/diagnóstico , Neoplasias/patologia , Neuroimagem/métodos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Projetos de Pesquisa , Razão Sinal-RuídoRESUMO
BACKGROUND: White matter lesions (WML) and brain atrophy are important biomarkers in stroke and dementia. Stroke lesions, either acute or old, symptomatic or silent, are common in older people. Such stroke lesions can have similar signals to WML and cerebrospinal fluid (CSF) on magnetic resonance (MR) images, and may be classified accidentally as WML or CSF by MR image processing algorithms, distorting WML and brain atrophy volume from the true volume. We evaluated the effect that acute or old stroke lesions at baseline, and new stroke lesions occurring during follow-up, could have on measurement of WML volume, cerebral atrophy and their longitudinal progression. METHODS: We used MR imaging data from patients who had originally presented with acute lacunar or minor cortical ischaemic stroke symptoms, recruited prospectively, who were scanned at baseline and about 3 years later. We measured WML and CSF volumes (ml) semi-automatically. We manually outlined the acute index stroke lesion (ISL), any old stroke lesions present at baseline, and new lesions appearing de novo during follow-up. We compared baseline and follow-up WML volume, cerebral atrophy and their longitudinal progression excluding and including the acute ISL, old and de novo stroke lesions. A non-parametric test (Wilcoxon's signed rank test) was used to compare the effects. RESULTS: Among 46 patients (mean age 72 years), 33 had an ISL visible on MR imaging (median volume 2.05 ml, IQR 0.88-8.88) and 7 of the 33 had old lacunes at baseline: WML volume was 8.54 ml (IQR 5.86-15.80) excluding versus 10.98 ml (IQR 6.91-24.86) including ISL (p < 0.001). At follow-up, median 39 months later (IQR 30-45), 3 patients had a de novo stroke lesion; total stroke lesion volume had decreased in 11 and increased in 22 patients: WML volume was 12.17 ml (IQR 8.54-19.86) excluding versus 14.79 ml (IQR 10.02-38.03) including total stroke lesions (p < 0.001). Including/excluding lacunes at baseline or follow-up also made small differences. Twenty-two of the 33 patients had tissue loss due to stroke lesions between baseline and follow-up, resulting in a net median brain tissue volume loss (i.e. atrophy) during follow-up of 24.49 ml (IQR 12.87-54.01) excluding versus 24.61 ml (IQR 15.54-54.04) including tissue loss due to stroke lesions (p < 0.001). Including stroke lesions in the WML volume added substantial noise, reduced statistical power, and thus increased sample size estimated for a clinical trial. CONCLUSIONS: Failure to exclude even small stroke lesions distorts WML volume, cerebral atrophy and their longitudinal progression measurements. This has important implications for design and sample size calculations for observational studies and randomised trials using WML volume, WML progression or brain atrophy as outcome measures. Improved methods of discriminating between stroke lesions and WML, and between tissue loss due to stroke lesions and true brain atrophy are required.
Assuntos
Infarto Cerebral/patologia , Doenças Neurodegenerativas/patologia , Idoso , Idoso de 80 Anos ou mais , Atrofia , Infarto Cerebral/diagnóstico , Demência/patologia , Progressão da Doença , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodosRESUMO
PURPOSE: To test the reliability of two computational methods for segmenting cerebral iron deposits (IDs) in the aging brain, given that its measurement in magnetic resonance imaging (MRI) is challenging due to the similar effect produced by other minerals, especially calcium, on T2*-weighted sequences. MATERIALS AND METHODS: T1-, T2*-weighted, and fluid-attenuated inversion recovery (FLAIR) MR brain images obtained at 1.5T from 70 subjects in their early 70s who displayed a wide range of brain IDs were analyzed. The first segmentation method used a multispectral approach based on the fusion of two or more structural sequences registered and mapped in the red/green color space followed by Minimum Variance Quantization. The second method employed a combined thresholding, size and shape analysis using T2*-weighted images augmented with visual information from T1-weighted data. RESULTS: Both segmentation techniques had high intra- and interobserver agreement (95% confidence interval [CI] = ± 57 voxels in a range from 0 to 1800), which decreased in subjects with significant microbleeds and/or IDs. However, the thresholding method was more observer dependent in identifying microbleeds and IDs boundaries than the multispectral approach. CONCLUSION: Both techniques proved to be in agreement and have good intra- and interobserver reliability. However, they have limitations, specifically with regard to automation and observer independence, so further work is required to develop fully user-independent methods of identifying cerebral IDs.