Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Arch Biochem Biophys ; 607: 8-19, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523732

RESUMO

Heart phosphorylating electron transfer particles (ETPH) produced NO at 1.2 ± 0.1 nmol NO. min(-1) mg protein(-1) by the mtNOS catalyzed reaction. These particles showed a NAD(+) reductase activity of 64 ± 3 nmol min(-1) mg protein(-1) sustained by reverse electron transfer (RET) at expenses of ATP and succinate. The same particles, without NADPH and in conditions of RET produced 0.97 ± 0.07 nmol NO. min(-1) mg protein(-1). Rotenone inhibited NO production supported by RET measured in ETPH and in coupled mitochondria, but did not reduce the activity of recombinant nNOS, indicating that the inhibitory effect of rotenone on NO production is due to an electron flow inhibition and not to a direct action on mtNOS structure. NO production sustained by RET corresponds to 20% of the total amount of NO released from heart coupled mitochondria. A mitochondrial fraction enriched in complex I produced 1.7 ± 0.2 nmol NO. min(-1) mg protein(-1) and reacted with anti-75 kDa complex I subunit and anti-nNOS antibodies, suggesting that complex I and mtNOS are located contiguously. These data show that mitochondrial NO production can be supported by RET, and suggest that mtNOS is next to complex I, reaffirming the idea of a functional association between these proteins.


Assuntos
Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Trifosfato de Adenosina/química , Animais , Catálise , Bovinos , Relação Dose-Resposta a Droga , Elétrons , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/metabolismo , NADP/química , Consumo de Oxigênio , Ratos , Proteínas Recombinantes/química , Rotenona/química , Partículas Submitocôndricas/química , Ácido Succínico/química
2.
Free Radic Biol Med ; 201: 66-75, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36924852

RESUMO

Hydrogen peroxide is the main metabolite effective in redox regulation and it is considered an insulinomimetic agent, with insulin signalling being essential for normal mitochondrial function in cardiomyocytes. Therefore, the aim of this work was to deeply analyse the heart mitochondrial H2O2 metabolism, in the early stage of type 1 diabetes. Diabetes was induced by Streptozotocin (STZ, single dose, 60 mg × kg-1, ip.) in male Wistar rats and the animals were sacrificed 10 days after injection. Mitochondrial membrane potential and ATP production, using malate-glutamate as substrates, in the heart of diabetic animals were like the ones observed in control group. Mn-SOD activity was lower (15%) in the heart of diabetic rats even though its expression was increased (29%). The increment in heart mitochondrial H2O2 production (117%) in diabetic animals was accompanied by an enhancement in the activities and expressions of glutathione peroxidase (26% and 42%) and of catalase (200% and 133%), with no changes in the peroxiredoxin activity, leading to [H2O2]ss ∼40 nM. Heart mitochondrial lipid peroxidation and protein nitration were higher in STZ-injected animals (45% and 42%) than in control group. The mitochondrial membrane potential and ATP production preservation suggest the absence of irreversible damage at this early stage of diabetes 1. The increase in mitochondrial [H2O2]ss above the physiological range, but still below supraphysiological concentration (∼100 nM) seems to be part of the adaptive response triggered in cardiomyocytes due to the absence of insulin. The signs of mitochondrial dysfunction observed in this very early stage of diabetes are consistent with the mitochondrial entity called ″complex I syndrome″.


Assuntos
Diabetes Mellitus Experimental , Peróxido de Hidrogênio , Ratos , Masculino , Animais , Peróxido de Hidrogênio/metabolismo , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Mitocôndrias/metabolismo , Insulina/metabolismo , Trifosfato de Adenosina/metabolismo
3.
J Bioenerg Biomembr ; 44(2): 243-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22426814

RESUMO

Acute endotoxemia (LPS, 10 mg/kg ip, Sprague Dawley rats, 45 days old, 180 g) decreased the O2 consumption of rat heart (1 mm³ tissue cubes) by 33% (from 4.69 to 3.11 µmol O2/min. g tissue). Mitochondrial O2 consumption and complex I activity were also decreased by 27% and 29%, respectively. Impaired respiration was associated to decreased ATP synthesis (from 417 to 168 nmol/min. mg protein) and ATP content (from 5.40 to 4.18 nmol ATP/mg protein), without affecting mitochondrial membrane potential. This scenario is accompanied by an increased production of O2·â» and H2O2 due to complex I inhibition. The increased NO production, as shown by 38% increased mtNOS biochemical activity and 31% increased mtNOS functional activity, is expected to fuel an increased ONOO⁻ generation that is considered relevant in terms of the biochemical mechanism. Heart mitochondrial bioenergetic dysfunction with decreased O2 uptake, ATP production and contents may indicate that preservation of mitochondrial function will prevent heart failure in endotoxemia.


Assuntos
Trifosfato de Adenosina/biossíntese , Complexo I de Transporte de Elétrons/metabolismo , Endotoxemia/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Consumo de Oxigênio , Animais , Transporte de Elétrons , Endotoxemia/complicações , Endotoxemia/patologia , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/patologia , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Mol Cell Biochem ; 359(1-2): 169-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21842376

RESUMO

Hemorrhage (H) is associated with a left ventricular (LV) dysfunction. However, the diastolic function has not been studied in detail. The main goal was to assess the diastolic function both during and 120 min after bleeding, in the absence and in the presence of L-NAME. Also, the changes in mRNA and protein expression of nitric oxide synthase (NOS) isoforms were determined. New Zealand rabbits were divided into three groups: Sham group, H group (hemorrhage 20% blood volume), and H L-NAME group (hemorrhage treated with L-NAME). We evaluated systolic and diastolic ventricular functions in vivo and in vitro (Langendorff technique). Hemodynamic parameters and LV function were measured before, during, and at 120 min after bleeding. We analyzed the isovolumic relaxation using t ½ in vivo (closed chest). After that, hearts were excised and perfused in vitro to measure myocardial stiffness. Samples were frozen to measure NOS mRNA and protein expression. The t½ increased during bleeding and returned to basal values 120 min after bleeding. L-NAME blunted this effect. Data from the H group revealed a shift to the left in the LV end diastolic pressure-volume curve at 120 min after bleeding, which was blocked by L-NAME. iNOS and nNOS protein expression and mRNA levels increased at 120 min after the hemorrhage. Acute hemorrhage induces early and transient isovolumic relaxation impairment and an increase in myocardial stiffness 120 min after bleeding. L-NAME blunted the LV dysfunction, suggesting that NO modulates ventricular function through iNOS and nNOS isoforms.


Assuntos
Diástole , Choque Hemorrágico/fisiopatologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Diástole/efeitos dos fármacos , Diástole/fisiologia , Coração/fisiopatologia , Hemorragia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo II , Óxidos de Nitrogênio , Coelhos , Choque Hemorrágico/complicações , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/etiologia
5.
Free Radic Biol Med ; 162: 129-140, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278511

RESUMO

The aim of this work was to study the early events that occur in heart mitochondria and to analyse the temporal evolution of cardiac mitochondrial dysfunction in a type 1 diabetes model. Male Wistar rats were injected with Streptozotocin (STZ, single dose, 60 mg × kg-1, i.p.) and hyperglycemic state was confirmed 72 h later. The animals were sacrificed 10 or 14 days after STZ-injection. Heart mitochondrial state 3 O2 consumption sustained by malate-glutamate (21%) or by succinate (16%), and complexes I-III (27%), II-III (24%) and IV (22%) activities were lower in STZ group, when animals were sacrificed at day 14, i.e. ~11 days of hyperglycemia. In contrast, after 10 days of STZ-injection (~7 days of hyperglycemia), only the state 3 O2 consumption sustained by malate-glutamate (23%) and its corresponding respiratory control (30%) were lower in diabetic rats, in accordance with complex I-III activity reduction (17%). Therefore, this time (~7 days of hyperglycemia) has been considered as an "early stage" of cardiac mitochondrial dysfunction. At this point, mitochondrial production rates of H2O2 (117%), NO (30%) and ONOO- (~225%), and mtNOS expression (29%) were higher; and mitochondrial SOD activity (15%) and [GSH + GSSG] (28%) were lower in diabetic rats. Linear correlations between the modified mitochondrial parameters and glycemias were observed. PGC-1α expression was similar between groups, suggesting that mitochondrial biogenesis was not triggered in this initial phase of mitochondrial dysfunction. Consequently, complex I, H2O2 and NO could be considered early subcellular signals of cardiac mitochondrial dysfunction, with NO and H2O2 being located upstream de novo synthesis of mitochondria.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Diabetes Mellitus Tipo 1/induzido quimicamente , Peróxido de Hidrogênio , Masculino , Mitocôndrias Cardíacas , Ratos , Ratos Wistar
6.
Exp Physiol ; 95(2): 274-81, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19880538

RESUMO

The activation of matrix metalloproteinases (MMPs) contributes to myocardial injury at the onset of reperfusion; however, their role in ischaemic postconditioning is unknown. The aim of the present study was to examine the effects of ischaemic postconditioning on MMP activity in isolated rabbit hearts. The isolated rabbit hearts were subjected to 30 min of global ischaemia followed by 180 min of reperfusion (I/R group; n = 8). In the ischaemic postconditioning group (n = 8), a postconditioning protocol was performed (2 cycles of 30 s reperfusion-ischaemia). In other experiments, we added doxycycline, an MMP inhibitor, at 25 (n = 7) or 50 micromol l(1) (n = 8) during the first 2 min of reperfusion. Coronary effluent and left ventricular tissue were collected during pre-ischaemic conditions and at different times during the reperfusion period to measure MMP-2 activity and cardiac protein nitration. We evaluated ventricular function and infarct size. In the I/R group, infarct size was 32.1 +/- 5.2%; Postcon reduced infarct size to 9.5 +/- 3.8% (P < 0.05) and inhibited MMP-2 activity during reperfusion. The administration of doxycycline at 50 micromol l(1) inhibited MMP-2 activity and cardiac protein nitration and reduced the infarct size to 9.7 +/- 2.8% (P < 0.05). A lower dose of doxycycline (25 micromol l(1)) failed to inhibit MMP-2 activity and did not modify the infarct size. Our results strongly suggest that ischaemic postconditioning may exert part of its cardioprotective effects through the inhibition of MMP-2 activity.


Assuntos
Ventrículos do Coração/fisiopatologia , Metaloproteinase 2 da Matriz/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Circulação Coronária , Ativação Enzimática , Traumatismo por Reperfusão Miocárdica/complicações , Coelhos , Disfunção Ventricular Esquerda/etiologia
7.
Food Funct ; 10(5): 2528-2537, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30993288

RESUMO

In order to study the in vitro effect of flavan-3-ol (+)-catechin on the enzymatic activities of mitochondrial complex I and nitric oxide synthase (mtNOS), as well as the consequences on the membrane potential and H2O2 production rate, isolated mitochondria from rat heart were exposed to 3 nM to 100 µM (+)-catechin. NADH-Q1 reductase (complex I) and mtNOS activities were inhibited 25% and 50%, respectively, by the addition of 10 nM (+)-catechin to the reaction medium. Moreover, in the nM range, (+)-catechin decreased state 4 mitochondrial membrane potential by about 10 mV, but failed to change the membrane potential measured in the presence of ADP. (+)-Catechin (10 nM) inhibited not only complex I activity, but also the H2O2 production rate (35%) sustained by malate-glutamate, in accordance with the decrease observed in mitochondrial membrane potential. Considering (+)-catechin concentrations lower than 10 nM, linear and positive correlations were obtained between mitochondrial complex I activity and either NO (r2 = 0.973) or H2O2 production rates (r2 = 0.958), suggesting a functional association among these parameters. Altogether, the results indicate that (+)-catechin, at nM concentrations, inhibits mitochondrial complex I activity, leading to membrane potential decline and consequently to reduction in H2O2 and NO production rates. The decrease in mtNOS activity could also be a consequence of the direct action of (+)-catechin on the NOS structure, this effect being in accordance with the functional interaction between complex I and mtNOS, as previously reported.


Assuntos
Catequina/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Animais , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Free Radic Biol Med ; 135: 274-282, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862545

RESUMO

Mitochondrial dysfunction named complex I syndrome was observed in striatum mitochondria of rotenone treated rats (2 mg rotenone/kg, i. p., for 30 or 60 days) in an animal model of Parkinson disease. After 60 days of rotenone treatment, the animals showed: (a) 6-fold increased bradykinesia and 60% decreased locomotor activity; (b) 35-34% decreases in striatum O2 uptake and in state 3 mitochondrial respiration with malate-glutamate as substrate; (c) 43-57% diminished striatum complex I activity with 60-71% decreased striatum mitochondrial NOS activity, determined both as biochemical activity and as functional activity (by the NO inhibition of active respiration); (d) 34-40% increased rates of mitochondrial O2•- and H2O2 productions and 36-46% increased contents of the products of phospholipid peroxidation and of protein oxidation; and (e) 24% decreased striatum mitochondrial content, likely associated to decreased NO-dependent mitochondrial biogenesis. Intermediate values were observed after 30 days of rotenone treatment. Frontal cortex tissue and mitochondria showed similar but less marked changes. Rotenone-treated rats showed mitochondrial complex I syndrome associated with cellular oxidative stress in the dopaminergic brain areas of striatum and frontal cortex, a fact that describes the high sensitivity of mitochondrial complex I to inactivation by oxidative reactions.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Doença de Parkinson/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/deficiência , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hipocinesia/induzido quimicamente , Hipocinesia/metabolismo , Hipocinesia/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ratos , Rotenona/farmacologia
9.
Biochim Biophys Acta ; 1757(3): 166-72, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16624252

RESUMO

The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.4 nmol/min mg protein) than in state 4 (2.2, 1.3 and 0.7 nmol/min mg protein). The activity of mtNOS, responsible for NO release, appears driven by the membrane potential component and not by intramitochondrial pH of the proton motive force. The intramitochondrial concentrations of the NOS substrates, L-arginine (about 310 microM) and NADPH (1.04-1.78 mM) are 60-1000 times higher than their KM values. Moreover, the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. Nitric oxide release was exponentially dependent on membrane potential as reported for mitochondrial H2O2 production [S.S. Korshunov, V.P. Skulachev, A.A. Satarkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15-18.]. Agents that decrease or abolish membrane potential minimize NO release while the addition of oligomycin that produces mitochondrial hyperpolarization generates the maximal NO release. The regulation of mtNOS activity, an apparently voltage-dependent enzyme, by membrane potential is marked at the physiological range of membrane potentials.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Feminino , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Mitocôndrias/enzimologia , Óxido Nítrico/metabolismo , Oxirredução , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Biochim Biophys Acta ; 1757(5-6): 535-42, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16615992

RESUMO

Mitochondria isolated from rat heart, liver, kidney and brain (respiratory control 4.0-6.5) release NO and H2O2 at rates that depend on the mitochondrial metabolic state: releases are higher in state 4, about 1.7-2.0 times for NO and 4-16 times for H2O2, than in state 3. NO release in rat liver mitochondria showed an exponential dependence on membrane potential in the range 55 to 180 mV, as determined by Rh-123 fluorescence. A similar behavior was reported for mitochondrial H2O2 production by [S.S. Korshunov, V.P. Skulachev, A.A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15_18.]. Transition from state 4 to state 3 of brain cortex mitochondria was associated to a decrease in NO release (50%) and in membrane potential (24-53%), this latter determined by flow cytometry and DiOC6 and JC-1 fluorescence. The fraction of cytosolic NO provided by diffusion from mitochondria was 61% in heart, 47% in liver, 30% in kidney, and 18% in brain. The data supports the speculation that NO and H2O2 report a high mitochondrial energy charge to the cytosol. Regulation of mtNOS activity by membrane potential makes mtNOS a regulable enzyme that in turn regulates mitochondrial O2 uptake and H2O2 production.


Assuntos
Citosol/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Potenciais da Membrana , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/metabolismo , Consumo de Oxigênio , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
11.
Front Biosci ; 12: 1210-9, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127374

RESUMO

The mitochondrial metabolic state regulates the rate of mitochondrial NO production and release to the cytosol. Nitric oxide release of rat heart mitochondria decreased markedly from 2.2 to 1.2 nmol NO/min. mg protein in the state 4 to state 3 transition. The activity of mtNOS, responsible for NO release, is driven by the membrane potential and not by intramitochondrial pH changes. The release of NO by rat liver mitochondria showed an exponential dependence on membrane potential. A similar behavior was reported for heart mitochondrial H2O2 production. The fraction of heart cytosolic NO provided by diffusion from mitochondria is 90%. The intramitochondrial concentrations of L-arginine and NADPH are higher than their KM values, and the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. These data indicate that the redox state of the respiratory chain components regulates H2O2 production and mitochondrial membrane potential modulates NO release, and support the speculation that NO and H2O2 are a biological signal that reports a high mitochondrial energy charge to the cytosol. The marked regulation of mtNOS activity, as a voltage-dependent enzyme and at the physiological range of membrane potentials, makes mtNOS a highly sensitive enzyme that in turn regulates mitochondrial O2 uptake and H2O2 production.


Assuntos
Mitocôndrias/enzimologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/biossíntese , Animais , Citosol/química , Difusão , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/enzimologia , Óxido Nítrico/química , Ratos
12.
Front Biosci ; 12: 1247-59, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127451

RESUMO

A remarkable number of adaptive responses; including changes in the cardiovascular, respiratory and hematologic systems; takes place during acclimatization to natural or simulated high altitude. This adaptation to chronic hypoxia confers the heart an improved tolerance to all major deleterious consequences of acute O2 deprivation, not only reducing infarct size but also alleviating post-ischemic contractile dysfunction and ventricular arrhythmias. There is growing evidence about the involvement of mitochondria and NO in the establishment of cardioprotection. This review focuses on evidence about the putative role of different effectors of heart acclimatization to chronic hypoxia. Along with classical parameters, we consider NO, specially that generated by mtNOS, mitochondrial respiratory chain, mitoK(ATP) channels, reactive oxygen species and control of gene expression by HIF-1.


Assuntos
Aclimatação , Hipóxia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Óxido Nítrico/fisiologia , Animais , Humanos , Fator 1 Induzível por Hipóxia/fisiologia , Camundongos , Canais de Potássio/fisiologia , Ratos
13.
Free Radic Biol Med ; 112: 267-276, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28756312

RESUMO

This study, in an experimental model of type I Diabetes Mellitus in rats, deals with the mitochondrial production rates and steady-state concentrations of H2O2 and NO, and ATP levels as part of a network of signaling molecules involved in heart mitochondrial biogenesis. Sustained hyperglycemia leads to a cardiac compromise against a work overload, in the absence of changes in resting cardiac performance and of heart hypertrophy. Diabetes was induced in male Wistar rats by a single dose of Streptozotocin (STZ, 60mg × kg-1, ip.). After 28 days of STZ-injection, rats were sacrificed and hearts were isolated. The mitochondrial mass (mg mitochondrial protein × g heart-1), determined through cytochrome oxidase activity ratio, was 47% higher in heart from diabetic than from control animals. Stereological analysis of cardiac tissue microphotographs showed an increase in the cytosolic volume occupied by mitochondria (30%) and in the number of mitochondria per unit area (52%), and a decrease in the mean area of each mitochondrion (23%) in diabetic respect to control rats. Additionally, an enhancement (76%) in PGC-1α expression was observed in cardiac tissue of diabetic animals. Moreover, heart mitochondrial H2O2 (127%) and NO (23%) productions and mtNOS expression (132%) were higher, while mitochondrial ATP production rate was lower (~ 40%), concomitantly with a partial-mitochondrial depolarization, in diabetic than in control rats. Changes in mitochondrial H2O2 and NO steady-state concentrations and an imbalance between cellular energy demand and mitochondrial energy transduction could be involved in the signaling pathways that lead to the novo synthesis of mitochondria. However, this compensatory mechanism triggered to restore the mitochondrial and tissue normal activities, did not lead to competent mitochondria capable of supplying the energetic demands in diabetic pathological conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Expressão Gênica , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Biogênese de Organelas , Tamanho das Organelas , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , Estreptozocina
14.
Rev. argent. cardiol ; 89(2): 92-97, abr. 2021. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1356854

RESUMO

RESUMEN Introducción: Resultados de nuestro laboratorio sugieren que la disfunción mitocondrial en el corazón precede a la falla miocárdica asociada a la hiperglucemia sostenida. Objetivo: Estudiar los eventos tempranos que ocurren en las mitocondrias de corazón en un modelo de diabetes mellitus tipo 1. Materiales y métodos: Ratas Wistar macho fueron inyectadas con estreptozotocina (STZ; 60 mg/kg, ip) y sacrificadas 10 o 14 días posinyección. Se obtuvo la fracción mitocondrial de corazón. Resultados: El consumo de O2 en estado 3 en presencia de malato-glutamato (21%) o succinato (16%) y las actividades de los complejos I-III (27%), II-III (24%) y IV (22%) fueron menores en los animales diabéticos a los 14 días posinyección. Cuando los animales se sacrificaron al día 10, solo el consumo de O2 en estado 3 en presencia de sustratos del complejo I (23%) y su control respiratorio (30%) fueron menores en las ratas inyectadas con STZ, de acuerdo con una reducción en la actividad del complejo I-III (17%). Estos cambios se acompañaron de un aumento en las velocidades de producción de H2O2 (117%), NO (30%) y ONOO- (∼225%), en la expresión de mtNOS (29%) y en la [O2 -]ss (∼150%) y [NO]ss (∼30%), junto con una disminución de la actividad de la Mn-SOD (15%) y la [GSSG+GSH]mitocondrial (28%), sin cambios en la expresión de PGC-1α. Conclusión: La disfunción del complejo I y el aumento en la generación de H2O2, NO y ONOO- pueden considerarse señales subcelulares prodrómicas del deterioro de la función mitocondrial que precede a la disfunción cardíaca en la diabetes.


ABSTRACT Background: Previous results from our laboratory suggest that heart mitochondrial dysfunction precedes myocardial failure associated with sustained hyperglycemia. Purpose: The aim of this study was to analyze the early events that take place in heart mitochondria in a type 1 diabetes mellitus (DM) model. Methods: Male Wistar rats were injected with streptozotocin (STZ; 60 mg/kg, ip.) to induce DM. They were euthanized 10 or 14 days later and the heart mitochondrial fraction was obtained. Results: State 3 O2 consumption in the presence of malate-glutamate (21%) or succinate (16%), and complex I-III (27%), II-III (24%) and IV (22%) activities were lower in diabetic animals 14 days after STZ injection. When animals were euthanized at day 10, only state 3 O2 consumption sustained by complex I substrates (23%) and its corresponding respiratory control (30%) were lower in rats injected with STZ, in agreement with reduced complex I-III activity (17%). These changes were accompanied by increased H2O2 (117%), NO (30%) and ONOO- (~225%) production rates, mtNOS expression (29%) and O2 - (~150%) and NO (~30%) steady-state concentrations, together with a decrease in Mn-SOD activity (15%) and mitochondrial [GSSG+GSH] (28%), without changes in PGC-1α expression. Conclusion: Complex I dysfunction and increased H2O2, NO and ONOO- production rates can be considered subcellular prodromal signals of the mitochondrial damage that precedes myocardial dysfunction in diabetes.

15.
Antioxid Redox Signal ; 25(2): 78-88, 2016 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27000416

RESUMO

AIM: We evaluated the effect of thioredoxin1 (Trx1) system on postischemic ventricular and mitochondrial dysfunction using transgenic mice overexpressing cardiac Trx1 and a dominant negative (DN-Trx1) mutant (C32S/C35S) of Trx1. Langendorff-perfused hearts were subjected to 15 min of ischemia followed by 30 min of reperfusion (R). We measured left ventricular developed pressure (LVDP, mmHg), left ventricular end diastolic pressure (LVEDP, mmHg), and t63 (relaxation index, msec). Mitochondrial respiration, SERCA2a, phospholamban (PLB), and phospholamban phosphorylation (p-PLB) Thr17 expression (Western blot) were also evaluated. RESULTS: At 30 min of reperfusion, Trx1 improved contractile state (LVDP: Trx1: 57.4 ± 4.9 vs. Wt: 27.1 ± 6.3 and DN-Trx1: 29.2 ± 7.1, p < 0.05); decreased myocardial stiffness (LVEDP: Wt: 24.5 ± 4.8 vs. Trx1: 11.8 ± 2.9, p < 0.05); and improved the isovolumic relaxation (t63: Wt: 63.3 ± 3.2 vs. Trx1: 51.4 ± 1.9, p < 0.05). DN-Trx1 mice aggravated the myocardial stiffness and isovolumic relaxation. Only the expression of p-PLB Thr17 increased at 1.5 min R in Wt and DN-Trx1 groups. At 30 min of reperfusion, state 3 mitochondrial O2 consumption was impaired by 13% in Wt and by 33% in DN-Trx1. ADP/O ratios for Wt and DN-Trx1 decrease by 25% and 28%, respectively; whereas the Trx1 does not change after ischemia and reperfusion (I/R). Interestingly, baseline values of complex I activity were increased in Trx1 mice; they were 24% and 47% higher than in Wt and DN-Trx1 mice, respectively (p < 0.01). INNOVATION AND CONCLUSION: These results strongly suggest that Trx1 ameliorates the myocardial effects of I/R by improving the free radical-mediated damage in cardiac and mitochondrial function, opening the possibility of new therapeutic strategies in coronary artery disease. Antioxid. Redox Signal. 25, 78-88.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio Atordoado/metabolismo , Tiorredoxinas/metabolismo , Disfunção Ventricular/metabolismo , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio Atordoado/genética , Consumo de Oxigênio , Tiorredoxinas/genética , Disfunção Ventricular/genética
16.
Int J Biochem Cell Biol ; 81(Pt B): 335-345, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27682517

RESUMO

Diabetes is a chronic disease associated to a cardiac contractile dysfunction that is not attributable to underlying coronary artery disease or hypertension, and could be consequence of a progressive deterioration of mitochondrial function. We hypothesized that impaired mitochondrial function precedes Diabetic Cardiomyopathy. Thus, the aim of this work was to study the cardiac performance and heart mitochondrial function of diabetic rats, using an experimental model of type I Diabetes. Rats were sacrificed after 28days of Streptozotocin injection (STZ, 60mgkg-1, ip.). Heart O2 consumption was declined, mainly due to the impairment of mitochondrial O2 uptake. The mitochondrial dysfunction observed in diabetic animals included the reduction of state 3 respiration (22%), the decline of ADP/O ratio (∼15%) and the decrease of the respiratory complexes activities (22-26%). An enhancement in mitochondrial H2O2 (127%) and NO (23%) production rates and in tyrosine nitration (58%) were observed in heart of diabetic rats, with a decrease in Mn-SOD activity (∼50%). Moreover, a decrease in contractile response (38%), inotropic (37%) and lusitropic (58%) reserves were observed in diabetic rats only after a ß-adrenergic stimulus. Therefore, in conditions of sustained hyperglycemia, heart mitochondrial O2 consumption and oxidative phosphorylation efficiency are decreased, and H2O2 and NO productions are increased, leading to a cardiac compromise against a work overload. This mitochondrial impairment was detected in the absence of heart hypertrophy and of resting cardiac performance changes, suggesting that mitochondrial dysfunction could precede the onset of diabetic cardiac failure, being H2O2, NO and ATP the molecules probably involved in mitochondrion-cytosol signalling.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Mitocôndrias Cardíacas/patologia , Trifosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Ratos
17.
Methods Enzymol ; 396: 444-55, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16291252

RESUMO

The functional activity of mitochondrial nitric oxide synthase (mtNOS) is determined by inhibiting O2 uptake and by enhancing H2O2 production. The effect of mtNOS activity on mitochondrial O2 uptake is assayed in state 3 respiration in two limit conditions of intramitochondrial NO: at its maximal and minimal levels. The first condition is achieved by supplementation with L-arginine and superoxide dismutase (SOD), and the second by addition of an NOS inhibitor and oxyhemoglobin. The difference between state 3 O2 uptake in both conditions constitutes the mtNOS functional activity in the inhibition of cytochrome oxidase activity. The functional activity of mtNOS in enhancing mitochondrial H2O2 generation in state 4 is given by the NO inhibition of ubiquinol-cytochrome c reductase activity. Simple determinations with the oxygen electrode or the measurement of mitochondrial H2O2 production can be used to assay the effects of physiological and pharmacological treatments on mtNOS activity.


Assuntos
Mitocôndrias/enzimologia , Óxido Nítrico Sintase/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , Óxido Nítrico/biossíntese , Consumo de Oxigênio , Ratos
18.
J Appl Physiol (1985) ; 98(6): 2370-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15705730

RESUMO

Mitochondrial nitric oxide (NO) production was assayed in rats submitted to hypobaric hypoxia and in normoxic controls (53.8 and 101.3 kPa air pressure, respectively). Heart mitochondria from young normoxic animals produced 0.62 and 0.37 nmol NO.min(-1).mg protein(-1) in metabolic states 4 and 3, respectively. This production accounts for a release to the cytosol of 29 nmol NO.min(-1).g heart(-1) and for 55% of the NO generation. The mitochondrial NO synthase (mtNOS) activity measured in submitochondrial membranes at pH 7.4 was 0.69 nmol NO.min(-1).mg protein(-1). Rats exposed to hypobaric hypoxia for 2-18 mo showed 20-60% increased left ventricle mtNOS activity compared with their normoxic siblings. Left ventricle NADH-cytochrome-c reductase and cytochrome oxidase activities decreased by 36 and 12%, respectively, from 2 to 18 mo of age, but they were not affected by hypoxia. mtNOS upregulation in hypoxia was associated with a retardation of the decline in the mechanical activity of papillary muscle upon aging and an improved recovery after anoxia-reoxygenation. The correlation of left ventricle mtNOS activity with papillary muscle contractility (determined as developed tension, maximal rates of contraction and relaxation) showed an optimal mtNOS activity (0.69 nmol.min(-1).mg protein(-1)). Heart mtNOS activity is regulated by O(2) in the inspired air and seems to play a role in NO-mediated signaling and myocardial contractility.


Assuntos
Envelhecimento/metabolismo , Altitude , Hipóxia Celular/fisiologia , Citocromos/metabolismo , Ventrículos do Coração/enzimologia , Mitocôndrias/metabolismo , Contração Miocárdica/fisiologia , Óxido Nítrico Sintase/metabolismo , Aclimatação/fisiologia , Envelhecimento/patologia , Animais , Masculino , Mecanotransdução Celular/fisiologia , Tamanho do Órgão/fisiologia , Músculos Papilares/citologia , Músculos Papilares/fisiologia , Pressão , Ratos , Ratos Wistar , Estresse Mecânico , Sobrevida
19.
Free Radic Biol Med ; 89: 602-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456055

RESUMO

The effect of NO between cytochromes b and c of the mitochondrial respiratory chain were studied using submitochondrial particles (SMP) from bovine heart and GSNO and SPER-NO as NO sources. Succinate-cytochrome c reductase (complex II-III) activity (222 ± 4 nmol/min. mg protein) was inhibited by 51% in the presence of 500 µM GSNO and by 48% in the presence of 30 µM SPER-NO, in both cases at ~1.25 µM NO. Neither GSNO nor SPER-NO were able to inhibit succinate-Q reductase activity (complex II; 220 ± 9 nmol/min. mg protein), showing that NO affects complex III. Complex II-III activity was decreased (36%) when SMP were incubated with l-arginine and mtNOS cofactors, indicating that this effect is also produced by endogenous NO. GSNO (500 µM) reduced cytochrome b562 by 71%, in an [O2] independent manner. Hyperbolic increases in O2(•-) (up to 1.3 ± 0.1 nmol/min. mg protein) and H2O2 (up to 0.64 ± 0.05 nmol/min. mg protein) productions were observed with a maximal effect at 500 µM GSNO. The O2(•-)/H2O2 ratio was 1.98 in accordance with the stoichiometry of the O2(•-) disproportionation. Moreover, H2O2 production was increased by 72-74% when heart coupled mitochondria were exposed to 500 µM GSNO or 30 µM SPER-NO. SMP incubated in the presence of succinate showed an EPR signal (g=1.99) compatible with a stable semiquinone. This EPR signal was increased not only by antimycin but also by GSNO and SPER-NO. These signals were not modified under N2 atmosphere, indicating that they are not a consequence to the effect of NOx species on complex III area. These results show that NO interacts with ubiquinone-cytochrome b area producing antimycin-like effects. This behaviour comprises the inhibition of electron transfer, the interruption of the oxidation of cytochromes b, and the enhancement of [UQH(•)]ss which, in turn, leads to an increase in O2(•-) and H2O2 mitochondrial production rates.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Óxido Nítrico/metabolismo , Partículas Submitocôndricas/metabolismo , Animais , Antimicina A/análogos & derivados , Antimicina A/metabolismo , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Oxirredução , Ratos
20.
Mol Aspects Med ; 25(1-2): 49-59, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15051316

RESUMO

The production of NO by heart mitochondria was 0.7-1.1 nmol NO/min.mg protein, an activity similar to the ones observed in mitochondrial membranes from other organs. Heart mtNOS seems to contribute with about 56% of the total cellular NO production. The immunological nature of the mtNOS isoform of cardiac tissue remains unclear; in our laboratory, heart mtNOS reacted with an anti-iNOS anti-body. Heart mtNOS expression and activity are regulated by physiological and pharmacological effectors. The state 4/state 3 transition regulates heart mtNOS activity and NO release in intact respiring mitochondria: NO production rates in state 3 were 40% lower than in state 4. Heart mtNOS expression was selectively regulated by O(2) availability in hypobaric conditions and the activity was 20-60% higher in hypoxic rats than in control animals, depending on age. In contrast, NADH-cytochrome c reductase and cytochrome oxidase activities were not affected by hypoxia. The activity of rat heart mtNOS decreased 20% on aging from 12 to 72 weeks of age. On the pharmacological side, mitochondrial NO production was increased after enalapril treatment (the inhibitor of the angiotensin converting enzyme) with modification of heart mtNOS functional activity in the regulation of mitochondrial O(2) uptake and H(2)O(2) production. Thus, heart mtNOS is a highly regulated mitochondrial enzyme, which in turn, plays a regulatory role through mitochondrial NO steady state levels that modulate O(2) uptake and O(2)(-) and H(2)O(2) production rates. Nitric oxide and H(2)O(2) constitute signals for metabolic control that are involved in the regulation of cellular processes, such as proliferation and apoptosis.


Assuntos
Envelhecimento/fisiologia , Hipóxia/metabolismo , Miocárdio/enzimologia , Óxido Nítrico Sintase/fisiologia , Animais , Humanos , Mitocôndrias/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA