Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 191(7): 2257-65, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168609

RESUMO

Lateral gene transfer is a significant contributor to the ongoing evolution of many bacterial pathogens, including beta-hemolytic streptococci. Here we provide the first characterization of a novel integrative conjugative element (ICE), ICESde3396, from Streptococcus dysgalactiae subsp. equisimilis (group G streptococcus [GGS]), a bacterium commonly found in the throat and skin of humans. ICESde3396 is 64 kb in size and encodes 66 putative open reading frames. ICESde3396 shares 38 open reading frames with a putative ICE from Streptococcus agalactiae (group B streptococcus [GBS]), ICESa2603. In addition to genes involves in conjugal processes, ICESde3396 also carries genes predicted to be involved in virulence and resistance to various metals. A major feature of ICESde3396 differentiating it from ICESa2603 is the presence of an 18-kb internal recombinogenic region containing four unique gene clusters, which appear to have been acquired from streptococcal and nonstreptococcal bacterial species. The four clusters include two cadmium resistance operons, an arsenic resistance operon, and genes with orthologues in a group A streptococcus (GAS) prophage. Streptococci that naturally harbor ICESde3396 have increased resistance to cadmium and arsenate, indicating the functionality of genes present in the 18-kb recombinogenic region. By marking ICESde3396 with a kanamycin resistance gene, we demonstrate that the ICE is transferable to other GGS isolates as well as GBS and GAS. To investigate the presence of the ICE in clinical streptococcal isolates, we screened 69 isolates (30 GGS, 19 GBS, and 20 GAS isolates) for the presence of three separate regions of ICESde3396. Eleven isolates possessed all three regions, suggesting they harbored ICESde3396-like elements. Another four isolates possessed ICESa2603-like elements. We propose that ICESde3396 is a mobile genetic element that is capable of acquiring DNA from multiple bacterial sources and is a vehicle for dissemination of this DNA through the wider beta-hemolytic streptococcal population.


Assuntos
Conjugação Genética , Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Streptococcus/genética , Arseniatos/farmacologia , Cádmio/farmacologia , Resistência a Medicamentos , Hemólise , Dados de Sequência Molecular , Família Multigênica , Infecções Estreptocócicas , Streptococcus/efeitos dos fármacos
2.
Nucleic Acids Res ; 33(Web Server issue): W358-62, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15980488

RESUMO

MovieMaker is a web server that allows short ( approximately 10 s), downloadable movies of protein motions to be generated. It accepts PDB files or PDB accession numbers as input and automatically calculates, renders and merges the necessary image files to create colourful animations covering a wide range of protein motions and other dynamic processes. Users have the option of animating (i) simple rotation, (ii) morphing between two end-state conformers, (iii) short-scale, picosecond vibrations, (iv) ligand docking, (v) protein oligomerization, (vi) mid-scale nanosecond (ensemble) motions and (vii) protein folding/unfolding. MovieMaker does not perform molecular dynamics calculations. Instead it is an animation tool that uses a sophisticated superpositioning algorithm in conjunction with Cartesian coordinate interpolation to rapidly and automatically calculate the intermediate structures needed for many of its animations. Users have extensive control over the rendering style, structure colour, animation quality, background and other image features. MovieMaker is intended to be a general-purpose server that allows both experts and non-experts to easily generate useful, informative protein animations for educational and illustrative purposes. MovieMaker is accessible at http://wishart.biology.ualberta.ca/moviemaker.


Assuntos
Gráficos por Computador , Filmes Cinematográficos , Proteínas/química , Software , Internet , Ligantes , Movimento (Física) , Mioglobina/química , Dobramento de Proteína , Rotação , Vibração
3.
Nucleic Acids Res ; 33(Web Server issue): W455-9, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15980511

RESUMO

BASys (Bacterial Annotation System) is a web server that supports automated, in-depth annotation of bacterial genomic (chromosomal and plasmid) sequences. It accepts raw DNA sequence data and an optional list of gene identification information and provides extensive textual annotation and hyperlinked image output. BASys uses >30 programs to determine approximately 60 annotation subfields for each gene, including gene/protein name, GO function, COG function, possible paralogues and orthologues, molecular weight, isoelectric point, operon structure, subcellular localization, signal peptides, transmembrane regions, secondary structure, 3D structure, reactions and pathways. The depth and detail of a BASys annotation matches or exceeds that found in a standard SwissProt entry. BASys also generates colorful, clickable and fully zoomable maps of each query chromosome to permit rapid navigation and detailed visual analysis of all resulting gene annotations. The textual annotations and images that are provided by BASys can be generated in approximately 24 h for an average bacterial chromosome (5 Mb). BASys annotations may be viewed and downloaded anonymously or through a password protected access system. The BASys server and databases can also be downloaded and run locally. BASys is accessible at http://wishart.biology.ualberta.ca/basys.


Assuntos
Genoma Bacteriano , Genômica/métodos , Software , Cromossomos Bacterianos , Gráficos por Computador , Internet , Plasmídeos , Interface Usuário-Computador
4.
Nucleic Acids Res ; 32(Web Server issue): W590-4, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15215457

RESUMO

The SuperPose web server rapidly and robustly calculates both pairwise and multiple protein structure superpositions using a modified quaternion eigenvalue approach. SuperPose generates sequence alignments, structure alignments, PDB (Protein Data Bank) coordinates and RMSD statistics, as well as difference distance plots and images (both static and interactive) of the superimposed molecules. SuperPose employs a simple interface that requires only PDB files or accession numbers as input. All other superposition decisions are made by the program. SuperPose is uniquely able to superimpose structures that differ substantially in sequence, size or shape. It is also capable of handling a much larger range of superposition queries and situations than many standalone programs and yields results that are intuitively more in agreement with known biological or structural data. The SuperPose web server is freely accessible at http://wishart.biology.ualberta.ca/SuperPose/.


Assuntos
Software , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Gráficos por Computador , Bases de Dados de Proteínas , Internet , Alinhamento de Sequência , Interface Usuário-Computador
5.
J Bacteriol ; 189(7): 2646-52, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17259318

RESUMO

Streptococcus dysgalactiae subsp. equisimilis strains (group G streptococcus [GGS]) are largely defined as commensal organisms, which are closely related to the well-defined human pathogen, the group A streptococcus (GAS). While lateral gene transfers are emerging as a common theme in these species, little is known about the mechanisms and role of these transfers and their effect on the population structure of streptococci in nature. It is now becoming evident that bacteriophages are major contributors to the genotypic diversity of GAS and, consequently, are pivotal to the GAS strain structure. Furthermore, bacteriophages are strongly associated with altering the pathogenic potential of GAS. In contrast, little is know about phages from GGS and their role in the population dynamics of GGS. In this study we report the first complete genome sequence of a GGS phage, Phi3396. Exhibiting high homology to the GAS phage Phi315.1, the chimeric nature of Phi3396 is unraveled to reveal evidence of extensive ongoing genetic diversity and dissemination of streptococcal phages in nature. Furthermore, we expand on our recent findings to identify inducible Phi3396 homologues in GAS from a region of endemicity for GAS and GGS infection. Together, these findings provide new insights into not only the population structure of GGS but also the overall population structure of the streptococcal genus and the emergence of pathogenic variants.


Assuntos
Bacteriófagos/isolamento & purificação , Streptococcus pyogenes/virologia , Streptococcus/virologia , Bacteriófagos/genética , Genoma Viral , Lisogenia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Streptococcus/crescimento & desenvolvimento , Streptococcus pyogenes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA