Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 271: 110832, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778254

RESUMO

A Fenton-like reaction and anaerobic ammonium oxidation (anammox) were combined to construct a novel process named FenTaMox for removing nitrogen (N) and organic carbon (measured as chemical oxidation demand (COD)). Two columns were packed with iron-manganese-sepiolite, a catalyst that uses hydrogen peroxide (H2O2) to catalyze Fenton-like reactions, and inoculated with marine anammox bacteria. During the start-up, marine anammox medium was fed into both columns to acclimate the marine anammox bacteria to iron-manganese-sepiolite. Batch experiments revealed that the marine anammox bacteria were not affected by 60 mgL-1 of H2O2. Next, medium containing glucose and H2O2 was fed into one column as the FenTaMox treatment, while medium containing glucose but no H2O2 was fed into the other column as the control. At a COD/N of 4, FenTaMox exhibited higher removal efficiencies of N and COD compared with that of the control, suggesting the application of FenTaMox for organic carbon- and N- removal.


Assuntos
Carbono , Nitrogênio , Anaerobiose , Reatores Biológicos , Desnitrificação , Peróxido de Hidrogênio , Oxirredução
2.
Conserv Biol ; 31(3): 625-634, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27718268

RESUMO

There has been much recent interest in using local knowledge and expert opinion for conservation planning, particularly for hard-to-detect species. Although it is possible to ask for direct estimation of quantities such as population size, relative abundance is easier to estimate. However, an expert's knowledge is often geographically restricted relative to the area of interest. Combining (or aggregating) experts' assessments of relative abundance is difficult when each expert only knows a part of the area of interest. We used Google's PageRank algorithm to aggregate ranked abundance scores elicited from local experts through a rapid rural-appraisal method. We applied this technique to conservation planning for the saola (Pseudoryx nghetinhensis), a poorly known bovid. Near a priority landscape for the species, composed of 3 contiguous protected areas, we asked groups of local people to indicate relative abundances of saola and other species by placing beans on community maps. For each village, we used this information to rank areas within the knowledge area of that village for saola abundance. We used simulations to compare alternative methods to aggregate the rankings from the different villages. The best-performing method was then used to produce a single map of relative abundance across the entire landscape, an area larger than that known to any one village. This map has informed prioritization of surveys and conservation action in the continued absence of direct information about the saola.


Assuntos
Conservação dos Recursos Naturais , Ruminantes , Distribuição Animal , Animais , Bovinos , Espécies em Perigo de Extinção , Densidade Demográfica
3.
Chemosphere ; 217: 609-617, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30447609

RESUMO

Nitrogen-removal processes using anammox bacteria are expected to achieve high-rate removal while remaining economical, and their practical applications have been investigated. However, anammox bacteria still have unfavorable characteristics for practical use, including susceptibility to a change in environmental conditions. In this study, with an aim of exploring the adaptability of mixed anammox bacteria to environmental conditions, the shift of nitrogen-removal performance and bacterial community in a mixed culture comprising freshwater anammox bacteria (FAB) and marine anammox bacteria (MAB) were investigated by a continuously stirred tank reactor (CSTR). The CSTR inoculated with the mixed anammox bacteria was operated for 180 days under an averaged condition between freshwater and marine conditions with a temperature of 27.5 °C and a synthetic medium with 15 g/L NaCl was used. Nitrogen-removal performance became stable after 114 days and more than 90% of nitrogen that was loaded into the reactor was removed in the range of nitrogen loading rate 0.07-0.42 kg N/m3/d. After operating at 0.42 kg N/m3/d for one month, a biomass sample was taken and its bacterial community was analyzed by clone-library analysis using a partial sequence of 16S rRNA. Among the clones of anammox bacteria that were made by an anammox-bacteria-specific primer, 97% of them were MAB and only 3% were FAB. These results indicate that the bacterial community including anammox bacteria was evidently changed due to environmental conditions and that the averaged condition in this study was suitable for marine bacteria rather than freshwater bacteria.


Assuntos
Microbiologia Ambiental , Água Doce/microbiologia , Microbiota , Nitrogênio/isolamento & purificação , Água do Mar/microbiologia , Fenômenos Fisiológicos Bacterianos , Biomassa , Reatores Biológicos/microbiologia , Oxirredução , Temperatura
4.
Chemosphere ; 196: 69-77, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29291516

RESUMO

Anaerobic ammonium oxidation (anammox) bacteria were enriched in continuous packed-bed columns with marine sediment. One column (SB-C) was packed with only marine sediment collected from a shrimp-aquaculture pond, and another column (SB-AMX) was inoculated with marine anammox bacteria (MAB) as a control. These columns were continuously fed with natural or artificial seawater including ammonium (NH4+) and nitrite (NO2-). The SB-AMX showed anammox activities from the beginning and continued for over 200 days. However, the SB-C had no nitrogen removal performance for over 170 days. After adding a bicarbonate solution (KHCO3) to the sediment-only packed column, anammox activity was observed within 13 days. The column exhibited a nitrogen removal efficiency (NRE) of 88% at a nitrogen loading rate (NLR) of 1.0 kg-N·m-3·day-1, which was comparable to the control one. A next-generation sequencing analysis revealed the predominance of MAB related to "Candidatus Scalindua spp.". In addition, the co-occurrence of sulfur-oxidizing denitrifiers was observed, which suggests their symbiotic relationship. This study suggests the applicability of MAB for in-situ bioremediation of nitrogen-contaminated marine sediments and reveals a potential microbial interaction between anammox and sulfur-oxidizing communities responsible for nitrogen and sulfur cycling in marine aquaculture systems.


Assuntos
Aquicultura , Bactérias/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Compostos de Amônio , Anaerobiose , Desnitrificação , Sedimentos Geológicos/química , Nitritos , Nitrogênio/análise , Oxirredução , Filogenia , Lagoas , Água do Mar/microbiologia , Poluentes Químicos da Água/análise
5.
Chemosphere ; 148: 444-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26845464

RESUMO

Salinity tolerance is one of the most important factors for the application of bioreactors to high-salinity wastewater. Although marine anammox bacteria (MAB) might be expected to tolerate higher salinities than freshwater anammox bacteria, there is little information on the effects of salinity on MAB activity. This study aimed to reveal the nitrogen removal properties in a continuous MAB reactor under conditions of rapid and extensive salinity changes. The reactor demonstrated stable nitrogen removal performance with a removal efficiency of over 85% under salinity conditions ranging from 0 to 50 g/L NaCl. The reactor performance was also well maintained, even though the salinity was rapidly changed from 30 to 50 g/L and from 30 to 0 g/L. Other evidence suggested that the seawater medium used contained components essential for effective MAB performance. Bacterial community analysis using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that planctomycete UKU-1, the dominant MAB species in the inoculum, was the main contributor to anammox activity under all conditions. The PCR-DGGE using a universal bacterial primer set showed different DNA band patterns between the reactor biomass sample collected under conditions of 75 g/L NaCl and all other conditions (0, 30, 50 and freshwater-medium). All DNA sequences determined were very similar to those of bacterial species from marine environments, anaerobic environments, or wastewater-treatment facilities.


Assuntos
Reatores Biológicos , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Desnitrificação , Água Doce , Reação em Cadeia da Polimerase , Salinidade , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA