Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytometry A ; 105(6): 464-473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38456613

RESUMO

Over the past decade, the flow cytometry field has witnessed significant advancements in the number of fluorochromes that can be detected. This enables researchers to analyze more than 40 markers simultaneously on thousands of cells per second. However, with this increased complexity and multiplicity of markers, the manual dispensing of antibodies for flow cytometry experiments has become laborious, time-consuming, and prone to errors. An automated antibody dispensing system could provide a potential solution by enhancing the efficiency, and by improving data quality by faithfully dispensing the fluorochrome-conjugated antibodies and by enabling the easy addition of extra controls. In this study, a comprehensive comparison of different liquid handlers for dispensing fluorochrome-labeled antibodies was conducted for the preparation of flow cytometry stainings. The evaluation focused on key criteria including dispensing time, dead volume, and reliability of dispensing. After benchmarking, the I.DOT, a non-contact liquid handler, was selected and optimized in more detail. In the end, the I.DOT was able to prepare a 25-marker panel in 20 min, including the full stain, all FMOs and all single stain controls for cells and beads. Having all these controls improved the validation of the panel, visualization, and analysis of the data. Thus, automated antibody dispensing by dispensers such as the I.DOT reduces time and errors, enhances data quality, and can be easily integrated in an automated workflow to prepare samples for flow cytometry.


Assuntos
Anticorpos , Citometria de Fluxo , Corantes Fluorescentes , Citometria de Fluxo/métodos , Humanos , Anticorpos/imunologia , Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Ensaios de Triagem em Larga Escala/métodos , Automação , Reprodutibilidade dos Testes
2.
Plant Physiol ; 188(2): 898-918, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34687312

RESUMO

As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue. To establish the single-cell transcriptomic landscape of these different leaf tissues, we performed high-throughput transcriptome sequencing of individual cells isolated from young leaves of Arabidopsis (Arabidopsis thaliana) seedlings grown in two different environmental conditions. The detection of approximately 19,000 different transcripts in over 1,800 high-quality leaf cells revealed 14 cell populations composing the young, differentiating leaf. Besides the cell populations comprising the core leaf tissues, we identified subpopulations with a distinct identity or metabolic activity. In addition, we proposed cell-type-specific markers for each of these populations. Finally, an intuitive web tool allows for browsing the presented dataset. Our data present insights on how the different cell populations constituting a developing leaf are connected via developmental, metabolic, or stress-related trajectories.


Assuntos
Arabidopsis/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Análise de Célula Única , Transcriptoma , Perfilação da Expressão Gênica
3.
Cancer Immunol Res ; 12(9): 1236-1251, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38874582

RESUMO

CD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR). We evaluated the nanoCARs in clinically relevant models in vitro, using co-cultures of CD70-specific nanoCAR T cells with malignant rhabdoid tumor organoids, and in vivo, using a diffuse large B-cell lymphoma patient-derived xenograft (PDX) model. Although the nanoCAR T cells were highly efficient in organoid co-cultures, they showed only modest efficacy in the PDX model. We determined that fratricide was not causing this loss in efficacy but rather CD70 interaction in cis with the nanoCAR-induced exhaustion. Knocking out CD70 in nanoCAR T cells using CRISPR/Cas9 resulted in dramatically enhanced functionality in the diffuse large B-cell lymphoma PDX model. Through single-cell transcriptomics, we obtained evidence that CD70 knockout CD70-specific nanoCAR T cells were protected from antigen-induced exhaustion. In addition, we demonstrated that wild-type CD70-specific nanoCAR T cells already exhibited signs of exhaustion shortly after production. Their gene signature strongly overlapped with gene signatures of exhausted CAR T cells. Conversely, the gene signature of knockout CD70-specific nanoCAR T cells overlapped with the gene signature of CAR T-cell infusion products leading to complete responses in chronic lymphatic leukemia patients. Our data show that CARs targeting endogenous T-cell antigens negatively affect CAR T-cell functionality by inducing an exhausted state, which can be overcome by knocking out the specific target.


Assuntos
Ligante CD27 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/genética , Técnicas de Inativação de Genes , Linhagem Celular Tumoral , Sistemas CRISPR-Cas
4.
Nat Nanotechnol ; 18(11): 1341-1350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37430039

RESUMO

The therapeutic potential of liposomes to deliver drugs into inflamed tissue is well documented. Liposomes are believed to largely transport drugs into inflamed joints by selective extravasation through endothelial gaps at the inflammatory sites, known as the enhanced permeation and retention effect. However, the potential of blood-circulating myeloid cells for the uptake and delivery of liposomes has been largely overlooked. Here we show that myeloid cells can transport liposomes to inflammatory sites in a collagen-induced arthritis model. It is shown that the selective depletion of the circulating myeloid cells reduces the accumulation of liposomes up to 50-60%, suggesting that myeloid-cell-mediated transport accounts for more than half of liposomal accumulation in inflamed regions. Although it is widely believed that PEGylation inhibits premature liposome clearance by the mononuclear phagocytic system, our data show that the long blood circulation times of PEGylated liposomes rather favours uptake by myeloid cells. This challenges the prevailing theory that synovial liposomal accumulation is primarily due to the enhanced permeation and retention effect and highlights the potential for other pathways of delivery in inflammatory diseases.


Assuntos
Artrite Experimental , Lipossomos , Animais , Humanos , Lipossomos/uso terapêutico , Membrana Sinovial/metabolismo , Artrite Experimental/tratamento farmacológico , Células Mieloides
5.
Genome Biol ; 24(1): 6, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639800

RESUMO

BACKGROUND: Testing an ever-increasing number of CRISPR components is challenging when developing new genome engineering tools. Plant biotechnology has few high-throughput options to perform iterative design-build-test-learn cycles of gene-editing reagents. To bridge this gap, we develop ITER (Iterative Testing of Editing Reagents) based on 96-well arrayed protoplast transfections and high-content imaging. RESULTS: We validate ITER in wheat and maize protoplasts using Cas9 cytosine and adenine base editors (ABEs), allowing one optimization cycle - from design to results - within 3 weeks. Given that previous LbCas12a-ABEs have low or no activity in plants, we use ITER to develop an optimized LbCas12a-ABE. We show that sequential improvement of five components - NLS, crRNA, LbCas12a, adenine deaminase, and linker - leads to a remarkable increase in activity from almost undetectable levels to 40% on an extrachromosomal GFP reporter. We confirm the activity of LbCas12a-ABE at endogenous targets in protoplasts and obtain base-edited plants in up to 55% of stable wheat transformants and the edits are transmitted to T1 progeny. We leverage these improvements to develop a highly mutagenic LbCas12a nuclease and a LbCas12a-CBE demonstrating that the optimizations can be broadly applied to the Cas12a toolbox. CONCLUSION: Our data show that ITER is a sensitive, versatile, and high-throughput platform that can be harnessed to accelerate the development of genome editing technologies in plants. We use ITER to create an efficient Cas12a-ABE by iteratively testing a large panel of vector components. ITER will likely be useful to create and optimize genome editing reagents in a wide range of plant species.


Assuntos
Sistemas CRISPR-Cas , Zea mays , Zea mays/genética , Triticum/genética , Edição de Genes/métodos , Mutagênese
6.
Sci Immunol ; 8(83): eadd3955, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172103

RESUMO

Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.


Assuntos
Células Dendríticas , Transdução de Sinais , Receptores X do Fígado/metabolismo , Transdução de Sinais/genética , Homeostase , Colesterol
7.
Science ; 370(6518)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32943451

RESUMO

Optimal plant growth is hampered by deficiency of the essential macronutrient phosphate in most soils. Plant roots can, however, increase their root hair density to efficiently forage the soil for this immobile nutrient. By generating and exploiting a high-resolution single-cell gene expression atlas of Arabidopsis roots, we show an enrichment of TARGET OF MONOPTEROS 5/LONESOME HIGHWAY (TMO5/LHW) target gene responses in root hair cells. The TMO5/LHW heterodimer triggers biosynthesis of mobile cytokinin in vascular cells and increases root hair density during low-phosphate conditions by modifying both the length and cell fate of epidermal cells. Moreover, root hair responses in phosphate-deprived conditions are TMO5- and cytokinin-dependent. Cytokinin signaling links root hair responses in the epidermis to perception of phosphate depletion in vascular cells.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Meristema/crescimento & desenvolvimento , Floema/crescimento & desenvolvimento , Fosfatos/deficiência , Epiderme Vegetal/crescimento & desenvolvimento , Transativadores/fisiologia , Xilema/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/genética , Citocininas/biossíntese , Citocininas/genética , Meristema/citologia , Meristema/metabolismo , Floema/citologia , Floema/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Xilema/citologia , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA