Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 593(7858): 233-237, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981052

RESUMO

Atmospheric acidity is increasingly determined by carbon dioxide and organic acids1-3. Among the latter, formic acid facilitates the nucleation of cloud droplets4 and contributes to the acidity of clouds and rainwater1,5. At present, chemistry-climate models greatly underestimate the atmospheric burden of formic acid, because key processes related to its sources and sinks remain poorly understood2,6-9. Here we present atmospheric chamber experiments that show that formaldehyde is efficiently converted to gaseous formic acid via a multiphase pathway that involves its hydrated form, methanediol. In warm cloud droplets, methanediol undergoes fast outgassing but slow dehydration. Using a chemistry-climate model, we estimate that the gas-phase oxidation of methanediol produces up to four times more formic acid than all other known chemical sources combined. Our findings reconcile model predictions and measurements of formic acid abundance. The additional formic acid burden increases atmospheric acidity by reducing the pH of clouds and rainwater by up to 0.3. The diol mechanism presented here probably applies to other aldehydes and may help to explain the high atmospheric levels of other organic acids that affect aerosol growth and cloud evolution.

2.
Sci Rep ; 9(1): 2643, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804392

RESUMO

Over the last four decades, space-based nadir observations of sulfur dioxide (SO2) proved to be a key data source for assessing the environmental impacts of volcanic emissions, for monitoring volcanic activity and early signs of eruptions, and ultimately mitigating related hazards on local populations and aviation. Despite its importance, a detailed picture of global SO2 daily degassing is difficult to produce, notably for lower-tropospheric plumes, due largely to the limited spatial resolution and coverage or lack of sensitivity and selectivity to SO2 of current (and previous) nadir sensors. We report here the first volcanic SO2 measurements from the hyperspectral TROPOspheric Monitoring Instrument (TROPOMI) launched in October 2017 onboard the ESA's Sentinel-5 Precursor platform. Using the operational processing algorithm, we explore the benefit of improved spatial resolution to the monitoring of global volcanic degassing. We find that TROPOMI surpasses any space nadir sensor in its ability to detect weak degassing signals and captures day-to-day changes in SO2 emissions. The detection limit of TROPOMI to SO2 emissions is a factor of 4 better than the heritage Aura/Ozone Monitoring Instrument (OMI). Here we show that TROPOMI SO2 daily observations carry a wealth of information on volcanic activity. Provided with adequate wind speed data, temporally resolved SO2 fluxes can be obtained at hourly time steps or shorter. We anticipate that TROPOMI SO2 data will help to monitor global volcanic daily degassing and better understand volcanic processes and impacts.

3.
Sci Rep ; 6: 32307, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27577535

RESUMO

The large-scale burning of crop residues in the North China Plain (NCP), one of the most densely populated world regions, was recently recognized to cause severe air pollution and harmful health effects. A reliable quantification of the magnitude of these fires is needed to assess regional air quality. Here, we use an eight-year record (2005-2012) of formaldehyde measurements from space to constrain the emissions of volatile organic compounds (VOCs) in this region. Using inverse modelling, we derive that satellite-based post-harvest burning fluxes are, on average, at least a factor of 2 higher than state-of-the-art bottom-up statistical estimates, although with significant interannual variability. Crop burning is calculated to cause important increases in surface ozone (+7%) and fine aerosol concentrations (+18%) in the North China Plain in June. The impact of crop fires is also found in satellite observations of other species, glyoxal, nitrogen dioxide and methanol, and we show that those measurements validate the magnitude of the top-down fluxes. Our study indicates that the top-down crop burning fluxes of VOCs in June exceed by almost a factor of 2 the combined emissions from other anthropogenic activities in this region, underscoring the need for targeted actions towards changes in agricultural management practices.


Assuntos
Poluentes Atmosféricos/análise , Incêndios , Material Particulado/análise , Aerossóis , Agricultura , Poluição do Ar/análise , Atmosfera , China , Produtos Agrícolas , Monitoramento Ambiental , Formaldeído/análise , Glioxal/análise , Metanol/análise , Dióxido de Nitrogênio/análise , Ozônio/análise
4.
J Environ Monit ; 8(3): 353-61, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16528419

RESUMO

We present in this paper fifteen years' measurements, from March 1991 to September 2005, of stratospheric NO2 vertical columns measured by a SAOZ zenith-sky visible spectrometer. The instrument spent most of its time at Aberystwyth, Wales, with occasional excursions to other locations. The data have been analysed with the WinDOAS analysis program with low-temperature high-resolution NO2 cross-sections and fitting a slit function to each spectrum. Because of a change in detector in May 1998 there is some uncertainty about the relative changes before and after this date, which are partially constrained by the results of an intercomparison exercise. However, the effect of the Mt Pinatubo aerosol cloud is very evident in the data from 1991-94, with a decrease of 10% in NO2 in the summer of 1992 (the SAOZ was located in Lerwick, Scotland during the winter of 1991-92 and observed very low NO2 values but these cannot be directly compared to the Aberystwyth data). To focus more on interannual and long-term variations in NO2, a seasonal variation comprising an annual and semi-annual component was fitted to the morning and evening twilight separately from 1995 to the present. This fit yielded average NO2 columns of 4.08 x 10(15) cm(-2) and 2.68 x 10(15) cm(-2) for the evening and morning twilight, respectively, with a corresponding annual amplitude of +/-2.08 x 10(15) cm(-2) and +/-1.50 x 10(15) cm(-2). Departures from the fitted curve show a trend of 6% per decade, consistent with that reported elsewhere, for the period 1998-2003, but in the past two years a distinct interannual variation of amplitude of approximately 8% has emerged.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Algoritmos , Monitoramento Ambiental/instrumentação , Ozônio/análise , Estações do Ano , Espectrofotometria/métodos , Fatores de Tempo , País de Gales
5.
J Environ Monit ; 8(10): 1020-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17240908

RESUMO

The assessment of changes induced by human activities on Earth atmospheric composition and thus on global climate requires a long-term and regular survey of the stratospheric and tropospheric atmospheric layers. The objective of this paper is to describe the atmospheric observations performed continuously at Reunion Island (55.5 degrees east, 20.8 degrees south) for 15 years. The various instruments contributing to the systematic observations are described as well as the measured parameters, the accuracy and the database. The LiDAR systems give profiles of temperature, aerosols and ozone in the troposphere and stratosphere, probes give profiles of temperature, ozone and relative humidity, radiometers and spectrometers give stratospheric and tropospheric integrated columns of a variety of atmospheric trace gases. Data are included in international networks, and used for satellite validation. Moreover, some scientific activities for which this station offers exceptional opportunities are highlighted, especially air mass exchanges nearby dynamical barriers: (1) On the vertical scale through the tropical tropopause layer (stratosphere-troposphere exchange). (2) On the quasi-horizontal scale across the southern subtropical barrier separating the tropical stratospheric reservoir from mid- and high latitudes.


Assuntos
Monitoramento Ambiental/instrumentação , Oxidantes Fotoquímicos/análise , Ozônio/análise , Aerossóis , Efeito Estufa , Fotometria , Temperatura , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA