Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Pept Sci ; 26(6): e3251, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32249520

RESUMO

During the final step of t-Boc/Bzl, solid-phase peptide synthesis (SPPS)-protecting groups from amino acids (aa) side chains must be removed from the target peptides during cleavage from the solid support. These reaction steps involve hydrolysis with hydrogen fluoride (HF) in the presence of a nucleophile (scavenger), whose function is to trap the carbocations produced during SN 1-type reactions. Five peptide sequences were synthesised for evaluating p-methoxyphenol effectiveness as a potent scavenger. After the synthesis, the resin-peptide was then separated into two equal parts to be cleaved using two scavengers: conventional reactive p-cresol (reported in the literature as an effective acyl ion eliminator) and p-methoxyphenol (hypothesised as fulfilling the same functions as the routinely used scavenger). Detailed analysis of the electrostatic potential map (EPM) revealed similarities between these two nucleophiles, regarding net atomic charge, electron density distribution, and similar pKa values. Good scavenger efficacy was observed by chromatography and mass spectrometry results for the synthesised molecules, which revealed that p-methoxyphenol can be used as a potent scavenger during SPPS by t-Boc/Bzl strategy, as similar results were obtained using the conventional scavenger.


Assuntos
Anisóis/química , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida , Estrutura Molecular , Peptídeos/química
2.
Bioorg Med Chem ; 26(9): 2401-2409, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29650461

RESUMO

Mycobacterium tuberculosis is considered one of the most successful pathogens in the history of mankind, having caused 1.7 million deaths in 2016. The amount of resistant and extensively resistant strains has increased; BCG has been the only vaccine to be produced in more than 100 years though it is still unable to prevent the disease's most disseminated form in adults; pulmonary tuberculosis. The search is thus still on-going for candidate antigens for an antituberculosis vaccine. This paper reports the use of a logical and rational methodology for finding such antigens, this time as peptides derived from the Rv3587c membrane protein. Bioinformatics tools were used for predicting mycobacterial surface location and Rv3587c protein structure whilst circular dichroism was used for determining its peptides' secondary structure. Receptor-ligand assays identified 4 high activity binding peptides (HABPs) binding specifically to A549 alveolar epithelial cells and U937 monocyte-derived macrophages, covering the region between amino acids 116 and 193. Their capability for inhibiting Mtb H37Rv invasion was evaluated. The recognition of antibodies from individuals suffering active and latent tuberculosis and from healthy individuals was observed in HABPs capable of avoiding mycobacterial entry to host cells. The results showed that 8 HABPs inhibited such invasion, two of them being common for both cell lines: 39265 (155VLAAYVYSLDNKRLWSNLDT173) and 39266 (174APSNETLVKTFSPGEQVTTY192). Peptide 39265 was the least recognised by antibodies from the individuals' sera evaluated in each group. According to the model proposed by FIDIC regarding synthetic vaccine development, peptide 39265 has become a candidate antigen for an antituberculosis vaccine.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Membrana/imunologia , Mycobacterium tuberculosis/fisiologia , Fragmentos de Peptídeos/imunologia , Vacinas contra a Tuberculose/imunologia , Sequência de Aminoácidos , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/toxicidade , Proteínas de Bactérias/síntese química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Linhagem Celular Tumoral , Biologia Computacional , Desenho de Fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas de Membrana/síntese química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/toxicidade , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/metabolismo , Vacinas contra a Tuberculose/síntese química , Vacinas contra a Tuberculose/metabolismo , Vacinas contra a Tuberculose/toxicidade , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo , Vacinas Sintéticas/toxicidade
3.
Molecules ; 23(3)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495456

RESUMO

Mycobacterium tuberculosis is the causative agent of tuberculosis, a disease causing major mortality worldwide. As part of a systematic methodology for studying M. tuberculosis surface proteins which might be involved in host-pathogen interactions, our group found that LpqG surface protein (Rv3623) found in M. tuberculosis complex strains was located on the mycobacterial envelope and that peptide 16661 (21SGCDSHNSGSLGADPRQVTVY40) had high specific binding to U937 monocyte-derived macrophages and inhibited mycobacterial entry to such cells in a concentration-dependent way. A region having high specific binding to A549 alveolar epithelial cells was found which had low mycobacterial entry inhibition. As suggested in previous studies, relevant sequences in the host-pathogen interaction do not induce an immune response and peptides characterised as HABPs are poorly recognised by sera from individuals regardless of whether they have been in contact with M. tuberculosis. Our approach to designing a synthetic, multi-epitope anti-tuberculosis vaccine has been based on identifying sequences involved in different proteins' mycobacteria-target cell interaction and modifying their sequence to improve their immunogenic characteristics, meaning that peptide 16661 sequence should be considered in such design.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Mycobacterium tuberculosis/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ligação Proteica , Conformação Proteica , Transcrição Gênica
4.
Molecules ; 22(12)2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231862

RESUMO

Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions' immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides' (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo-electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.


Assuntos
Vacinas Antimaláricas/química , Peptídeos/química , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Haplorrinos , Humanos , Complexo Principal de Histocompatibilidade , Vacinas Antimaláricas/imunologia , Modelos Moleculares , Plasmodium falciparum/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Molecules ; 22(11)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104210

RESUMO

Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.


Assuntos
Antígenos de Protozoários/imunologia , Malária/imunologia , Malária/prevenção & controle , Peptídeos/imunologia , Animais , Epitopos/imunologia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia
6.
Biochem Biophys Res Commun ; 451(1): 15-23, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25063026

RESUMO

Developing novel generations of subunit-based antimalarial vaccines in the form of chemically-defined macromolecule systems for multiple antigen presentation represents a classical problem in the field of vaccine development. Many efforts involving synthesis strategies leading to macromolecule constructs have been based on dendrimer-like systems, the condensation of large building blocks and conventional asymmetric double dimer constructs, all based on lysine cores. This work describes novel symmetric double dimer and condensed linear constructs for presenting selected peptide multi-copies from the apical sushi protein expressed in Plasmodium falciparum. These molecules have been proved to be safe and innocuous, highly antigenic and have shown strong protective efficacy in rodents challenged with two Plasmodium species. Insights into systematic design, synthesis and characterisation have led to such novel antigen systems being used as potential platforms for developing new anti-malarial vaccine candidates.


Assuntos
Antígenos de Protozoários/química , Vacinas Antimaláricas/química , Vacinas Antimaláricas/farmacologia , Plasmodium falciparum/química , Sequência de Aminoácidos , Aminocaproatos/química , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Epitopos , Humanos , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/imunologia , Plasmodium berghei/patogenicidade , Plasmodium yoelii/patogenicidade , Conformação Proteica , Multimerização Proteica , Coelhos , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
7.
Crit Rev Microbiol ; 40(2): 117-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23445450

RESUMO

Tuberculosis (TB) is an air-born, transmissible disease, having an estimated 9.4 million new TB cases worldwide in 2009. Eventual control of this disease by developing a safe and efficient new vaccine able to detain its spread will have an enormous impact on public health policy. Selecting potential antigens to be included in a multi-epitope, minimal subunit-based, chemically-synthesized vaccine containing the minimum sequences needed for blocking mycobacterial interaction with host cells is a complex task due to the multiple mechanisms involved in M. tuberculosis infection and the mycobacterium's immune evasion mechanisms. Our methodology, described here takes into account a highly robust, specific, sensitive and functional approach to the search for potential epitopes to be included in an anti-TB vaccine; it has been based on identifying short mycobacterial protein fragments using synthetic peptides having high affinity interaction with alveolar epithelial cells (A549) and monocyte-derived macrophages (U937) which are able to block the microorganism's entry to target cells in in vitro assays. This manuscript presents a review of the results obtained with some of the MTB H37Rv proteins studied to date, aimed at using these high activity binding peptides (HABPs) as platforms to be included in a minimal subunit-based, multiepitope, chemically-synthesized, antituberculosis vaccine.


Assuntos
Antígenos de Bactérias/imunologia , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/isolamento & purificação , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Macrófagos/microbiologia , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/fisiologia , Vacinas contra a Tuberculose/química , Vacinas contra a Tuberculose/isolamento & purificação
8.
Mem Inst Oswaldo Cruz ; 108(2): 131-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23579789

RESUMO

The goal of this study was to demonstrate the usefulness of an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of pulmonary tuberculosis (PTB) and extrapulmonary TB (EPTB). This assay used 20 amino acid-long, non-overlapped synthetic peptides that spanned the complete Mycobacterium tuberculosis ESAT-6 and Ag85A sequences. The validation cohort consisted of 1,102 individuals who were grouped into the following five diagnostic groups: 455 patients with PTB, 60 patients with EPTB, 40 individuals with non-EPTB, 33 individuals with leprosy and 514 healthy controls. For the PTB group, two ESAT-6 peptides (12033 and 12034) had the highest sensitivity levels of 96.9% and 96.2%, respectively, and an Ag85A-peptide (29878) was the most specific (97.4%) in the PTB groups. For the EPTB group, two Ag85A peptides (11005 and 11006) were observed to have a sensitivity of 98.3% and an Ag85A-peptide (29878) was also the most specific (96.4%). When combinations of peptides were used, such as 12033 and 12034 or 11005 and 11006, 99.5% and 100% sensitivities in the PTB and EPTB groups were observed, respectively. In conclusion, for a cohort that consists entirely of individuals from Venezuela, a multi-antigen immunoassay using highly sensitive ESAT-6 and Ag85A peptides alone and in combination could be used to more rapidly diagnose PTB and EPTB infection.


Assuntos
Antígenos de Bactérias , Mycobacterium tuberculosis/imunologia , Peptídeos , Tuberculose/diagnóstico , Adulto , Antígenos de Bactérias/imunologia , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , Sensibilidade e Especificidade , Tuberculose/imunologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/imunologia
9.
Amino Acids ; 42(6): 2165-75, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21674161

RESUMO

Peptide 11389 from CD21-binding region of EBV-gp350/220 protein binds to PBMCs inducing IL-6 expression and inhibiting EBV-binding to PBMCs. In addition, anti-peptide 11389 antibodies recognize EBV-infected cells and inhibit both EBV infection and IL-6 production in PBMCs. We have postulated that native structure stabilization of peptide 11389 sequence can increase its biological activity. The strategy was to modify its sequence to restrict the number of structures that peptide 11389 could acquire in solution (decreasing peptide's configurational entropy) and to weaken the non-relevant intermolecular interactions (decreasing its hydrophobicity), preserving CD21-interacting residues and structure as displayed in the native protein. Thirteen analog peptides were designed and synthesized; most of them were monomers containing an intra-chain disulfide bridge. Analog peptides 34058, 34060, 34061, 34296, 34298, 34299 and 34300 inhibited EBV invasion of PBMCs. Peptides 34059, 34060, 34295 and 34297 induced IL-6 levels in PBMCs (EC50=3.4, 3.3, 0.5, 0.5 µM, respectively) at higher potency than peptide 11389 (EC50=5.8 µM). Peptides 34057, 34059, 34060, 34301 and 34302 interacted with anti-EBV antibodies with affinities from 3 to 50 times higher than peptide 11389. Most of analog peptides were highly immunogenic and elicited antibodies that cross-react with EBV. In conclusion, we have designed peptides displaying higher biological activity than peptide 11389.


Assuntos
Antígenos Virais/imunologia , Herpesvirus Humano 4/imunologia , Leucócitos Mononucleares/imunologia , Peptídeos/imunologia , Proteínas Virais/imunologia , Sequência de Aminoácidos , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Relação Dose-Resposta a Droga , Entropia , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Interleucina-6/biossíntese , Interleucina-6/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Conformação Proteica , Receptores de Complemento 3d/imunologia , Receptores de Complemento 3d/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos
10.
Amino Acids ; 43(1): 365-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21952731

RESUMO

Several sporozoite proteins have been associated with Plasmodium falciparum cell traversal and hepatocyte invasion, including the cell-traversal protein for ookinetes and sporozoites (CelTOS), and thrombospondin-related sporozoite protein (TRSP). CelTOS and TRSP amino acid sequences have been finely mapped to identify regions specifically binding to HeLa and HepG2 cells, respectively. Three high-activity binding peptides (HABPs) were found in CelTOS and one HABP was found in TRSP, all of them having high α-helical structure content. These HABPs' specific binding was sensitive to HeLa and HepG2 cells' pre-treatment with heparinase I and chondroitinase ABC. Despite their similarity at three-dimensional (3D) structural level, TRSP and TRAP HABPs located in the TSR domain did not compete for the same binding sites. CelTOS and TRSP HABPs were used as a template for designing modified sequences to then be assessed in the Aotus monkey experimental model. Antibodies directed against these modified HABPs were able to recognize both the native parasite protein by immunofluorescence assay and the recombinant protein (expressed in Escherichia coli) by Western blot and ELISA assays. The results suggested that these modified HABPs could be promising targets in designing a fully effective, antimalarial vaccine.


Assuntos
Plasmodium falciparum/imunologia , Proteínas de Protozoários , Trombospondinas , Sequência de Aminoácidos , Animais , Aotus trivirgatus , Sítios de Ligação , Linhagem Celular Tumoral , Condroitina ABC Liase/farmacologia , Células HeLa , Células Hep G2 , Heparina Liase/farmacologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Humanos , Vacinas Antimaláricas/imunologia , Peptídeos/análise , Peptídeos/imunologia , Peptídeos/isolamento & purificação , Plasmodium falciparum/citologia , Plasmodium falciparum/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Esporozoítos/citologia , Esporozoítos/imunologia , Esporozoítos/metabolismo , Trombospondinas/química , Trombospondinas/imunologia , Trombospondinas/isolamento & purificação
11.
Int J Pept Res Ther ; 28(3): 98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528735

RESUMO

Diagnosis and treatment of active tuberculosis (ATB) as well as latent tuberculosis infection (LTBI) are required for effective tuberculosis (TB) control, especially in TB endemic area. The usefulness of conventional tests to distinguish between ATB and LTBI has remained challenging. The present study was aimed to demonstrate the usefulness of the serological response to synthetic peptides from Mycobacterium tuberculosis (Mtb) antigens for discrimination between ATB and LTBI in Warao Amerindians. Serum IgG antibody levels were measured by the indirect ELISA assay using 22 designed and synthesized peptides derived from immunogenic Mtb ESAT-6 and Ag85A proteins. A total of 211 adult Warao Amerindians were included; cases with active TB (ATB, n = 75), latent TB infection (LTBI, n = 85) and non-infected (NI, n = 51). The approach's diagnostic information was compared using receiver operating characteristic (ROC) curves. For ATB diagnostic performance between ATB and NI; ESAT-6; P-12037 had 100% of sensitivity (AUC = 0.812; 0.733 to 0.891 95% CI); and Ag85A; P-10997 had 100% of specificity (AUC = 0.691; 0.597 to 0.785 95% CI); and ATB and LTBI; Ag85A; P-29878 had 100% of sensitivity (AUC = 0.741; 0.666-0.817 95% CI), and P-29879 had 99% of specificity (AUC = 0.679; 0.593-0.765 95% CI). While that ESAT-6 P-12037 also allowed differentiation between LTBI and NI or healthy ones. It had 98.8% of sensitivity and 98.0% of specificity (AUC = 0.640; 0.545-0.735 95% CI). The potential of combination-antigen immunoassays with peptides could discriminate between Warao Amerindians with ATB, LTBI and NI. Further validation of this approach could lead to developing a complementary tool for rapid diagnosis of TB infections.

12.
Front Immunol ; 13: 926680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341338

RESUMO

Major histocompatibility class II molecule-peptide-T-cell receptor (MHCII-p-TCR) complex-mediated antigen presentation for a minimal subunit-based, multi-epitope, multistage, chemically-synthesised antimalarial vaccine is essential for inducing an appropriate immune response. Deep understanding of this MHCII-p-TCR complex's stereo-electronic characteristics is fundamental for vaccine development. This review encapsulates the main principles for achieving such epitopes' perfect fit into MHC-II human (HLADRß̞1*) or Aotus (Aona DR) molecules. The enormous relevance of several amino acids' physico-chemical characteristics is analysed in-depth, as is data regarding a 26.5 ± 2.5Å distance between the farthest atoms fitting into HLA-DRß1* structures' Pockets 1 to 9, the role of polyproline II-like (PPIIL) structures having their O and N backbone atoms orientated for establishing H-bonds with specific HLA-DRß1*-peptide binding region (PBR) residues. The importance of residues having specific charge and orientation towards the TCR for inducing appropriate immune activation, amino acids' role and that of structures interfering with PPIIL formation and other principles are demonstrated which have to be taken into account when designing immune, protection-inducing peptide structures (IMPIPS) against diseases scourging humankind, malaria being one of them.


Assuntos
Vacinas Antimaláricas , Animais , Humanos , Peptídeos , Aotidae/metabolismo , Receptores de Antígenos de Linfócitos T , Eletrônica , Aminoácidos
13.
PLoS Comput Biol ; 6(6): e1000824, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585611

RESUMO

The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biologia Computacional/métodos , Mycobacterium tuberculosis/metabolismo , Animais , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/metabolismo , Inteligência Artificial , Proteínas da Membrana Bacteriana Externa/química , Fracionamento Celular , Eletroforese em Gel de Poliacrilamida , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Escherichia coli/metabolismo , Immunoblotting , Microscopia Imunoeletrônica , Modelos Estatísticos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/química , Peptídeos/imunologia , Peptídeos/metabolismo , Coelhos , Sonicação , Frações Subcelulares/metabolismo
14.
J Clin Med ; 10(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498845

RESUMO

Schistosomiasis is a parasitic disease that affects 143 million people in endemic countries. This work analyzed overexpressed sequences from the cercaria phase to the early schistosomulum phase using bioinformatics tools to predict host interaction and selected proteins for predicting T cell epitopes. The final peptides were chemically synthesized, and their toxicity was evaluated in vitro. Peptides were formulated in the Adjuvant Adaptation (ADAD) vaccination system and injected into BALB/c mice that were challenged with S. mansoni cercariae to assess protection and immunogenicity. A total of 39 highly expressed S.mansoni proteins were identified as being of potential interest. Three T cell peptides predicted to bind MHC mouse and human class II were synthesized and formulated for vaccination. SmGSP and SmIKE reduced the number of eggs trapped in the liver by more than 50% in challenged BALB/c mice. The liver of mice vaccinated with either SmGSP or SmTNP had a significantly reduced affected liver surface. Transcriptome-based T cell peptides elicit partial protection and could be candidates for a multiantigen vaccine.

15.
Dis Markers ; 2021: 6673250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306256

RESUMO

BACKGROUND: Tuberculosis (TB) is being underdetected in children as most are smear-negative. This work was aimed at evaluating ESAT-6 and Ag85A synthetic peptides' serodiagnostic potential for diagnosing children having a clinical suspicion of TB. METHODS: The study involved 438 children: 77 Creole nonindigenous (13 suspected of having TB and 64 healthy ones) and 361 Warao indigenous children (39 suspected of TB and 322 healthy children). The approach's diagnostic information was compared using operational characteristics and receiver-operating characteristic (ROC) curves. RESULTS: Ag85A P-29879 had 94.6% sensitivity (AUC = 0.741: 0.651 to 0.819 95% CI) in indigenous children. ESAT-6 P-12036 and P-12037 had 100% and 92.3% of sensitivity (AUC = 0.929: 0.929: 0.846 to 0.975 95% CI and 0.791: 63.9 to 98.7 95% CI, respectively) in Creole children. ESAT-6 peptides also allowed a differentiation between children with TB and healthy ones. CONCLUSIONS: Further validation of this approach could lead to developing a complementary tool for rapid TB diagnosis in children.


Assuntos
Aciltransferases/química , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Peptídeos/química , Tuberculose/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Tuberculose/imunologia
16.
J Cell Biochem ; 110(4): 882-92, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20564187

RESUMO

Despite significant global efforts, a completely effective vaccine against Plasmodium falciparum, the species responsible for the most serious form of malaria, has not been yet obtained. One of the most promising approaches consists in combining chemically synthesized minimal subunits of parasite proteins involved in host cell invasion, which has led to the identification of peptides with high binding activity (named HABPs) to hepatocyte and red blood cell (RBC) surface receptors in a large number of sporozoite and merozoite proteins, respectively. Among these proteins is the merozoite surface protein 11 (MSP11), which shares important structural and immunological features with the antimalarial vaccine candidates MSP1, MSP3, and MSP6. In this study, 20-mer-long synthetic peptides spanning the complete sequence of MSP11 were assessed for their ability to bind specifically to RBCs. Two HABPs with high ability to inhibit invasion of RBCs in vitro were identified (namely HABPs 33595 and 33606). HABP-RBC bindings were characterized by means of saturation assays and Hill analysis, finding cooperative interactions of high affinity for both HABPs (n(H) of 1.5 and 1.2, K(d) of 800 and 600 nM for HABPs 33595 and 33606, respectively). The nature of the possible RBC receptors for MSP11 HABPs was studied in binding assays to enzyme-treated RBCs and cross-linking assays, finding that both HABPs use mainly a sialic acid-dependent receptor. An analysis of the immunological, structural and polymorphic characteristics of MSP11 HABPs supports including these peptides in further studies with the aim of designing a fully effective protection-inducing vaccine against malaria.


Assuntos
Sequência Conservada , Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Peso Molecular , Polimorfismo Genético , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
17.
Biochem Biophys Res Commun ; 394(3): 529-35, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20206601

RESUMO

Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.


Assuntos
Antígenos de Protozoários/química , Interações Hospedeiro-Parasita/imunologia , Vacinas Antimaláricas/química , Malária/imunologia , Malária/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Aotus trivirgatus , Cristalografia por Raios X , Ligação de Hidrogênio , Vacinas Antimaláricas/imunologia , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/imunologia , Conformação Proteica
18.
BMC Microbiol ; 10: 109, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20388213

RESUMO

BACKGROUND: To date, the function of many hypothetical membrane proteins of Mycobacterium tuberculosis is still unknown and their involvement in pathogen-host interactions has not been yet clearly defined. In this study, the biological activity of peptides derived from the hypothetical membrane protein Rv0679c of M. tuberculosis and their involvement in pathogen-host interactions was assessed. Transcription of the Rv0679c gene was studied in 26 Mycobacterium spp. Strains. Antibodies raised against putative B-cell epitopes of Rv0679c were used in Western blot and immunoelectron microscopy assays. Synthetic peptides spanning the entire length of the protein were tested for their ability to bind to A549 and U937 cells. High-activity binding peptides (HABPs) identified in Rv0679c were tested for their ability to inhibit mycobacterial invasion into cells. RESULTS: The gene encoding Rv0679c was detected in all strains of the M. tuberculosis complex (MTC), but was only transcribed in M. tuberculosis H37Rv, M. tuberculosis H37Ra and M. africanum. Anti-Rv0679c antibodies specifically recognized the protein in M. tuberculosis H37Rv sonicate and showed its localization on mycobacterial surface. Four HABPs inhibited invasion of M. tuberculosis to target cells by up to 75%. CONCLUSIONS: The results indicate that Rv0679c HABPs and in particular HABP 30979 could be playing an important role during M. tuberculosis invasion of host cells, and therefore could be interesting research targets for studies aimed at developing strategies to control tuberculosis.


Assuntos
Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/fisiologia , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Fatores de Virulência/fisiologia , Anticorpos Antibacterianos/isolamento & purificação , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Western Blotting , Linhagem Celular , Células Epiteliais/microbiologia , Epitopos de Linfócito B/imunologia , Perfilação da Expressão Gênica , Humanos , Microscopia Imunoeletrônica , Monócitos/microbiologia , Ligação Proteica , Vacinas contra a Tuberculose/imunologia , Fatores de Virulência/imunologia
19.
Amino Acids ; 39(5): 1507-19, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20473772

RESUMO

We tested the hypothesis that stabilizing α-helix of Epstein-Barr virus gH-derived peptide 11438 used for binding human cells will increase its biological activity. Non-stable α-helix of peptide 11438 was unfolded in an entropy-driven process, despite the opposing effect of the enthalpy factor. Adding and/or changing amino acids in peptide 11438 allowed the designing of peptides 33207, 33208 and 33210; peptides 33208 and 33210 displayed higher helical content due to a decreased unfolding entropy change as was determined by AGADIR, molecular dynamics and circular dichroism analysis. Peptides 33207, 33208 and 33210 inhibited EBV invasion of peripheral blood mononuclear cells and displayed epitopes more similar to native protein than peptide 11438; these peptides could be useful for detecting antibodies induced by native gH protein since they displayed high reactivity with anti-EBV antibodies. Anti-peptide 33207 antibodies showed higher reactivity with EBV than anti-peptide 11438 antibodies being useful for inducing antibodies against EBV. Anti-peptide 33210 antibodies inhibit EBV invasion of epithelial cells better than anti-peptide 11438 antibodies. Peptide 33210 bound to normal T lymphocytes and Raji cells stronger than peptide 11438 and also induced apoptosis of monocytes and Raji cells but not of normal T cells in a similar way to EBV-gH. Peptide 33210 inhibited the monocytes' development toward dendritic cells better than EBV and peptide 11438. In conclusion, stabilizing the α-helix in peptides 33208 and 33210 designed from peptide 11438 increased the antigenicity and the ability of the antibodies induced by peptides of inhibiting EBV invasion of host cells.


Assuntos
Antígenos Virais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Herpesvirus Humano 4/química , Leucócitos Mononucleares/efeitos dos fármacos , Peptídeos/imunologia , Peptídeos/farmacologia , Proteínas Virais/química , Animais , Antígenos Virais/química , Antígenos Virais/genética , Linhagem Celular , Herpesvirus Humano 4/imunologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Testes de Sensibilidade Microbiana , Modelos Químicos , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/química , Estrutura Secundária de Proteína , Coelhos , Termodinâmica , Proteínas Virais/imunologia
20.
Malar J ; 9: 283, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20942952

RESUMO

BACKGROUND: Malaria caused by Plasmodium vivax is a major public health problem worldwide that affects 70-80 million people in the Middle East, Asia, Western Pacific, South America and the Caribbean. Despite its epidemiological importance, few antigens from this parasite species have been characterized to date compared to Plasmodium falciparum, due in part to the difficulties of maintaining an in vitro culture of P. vivax. This study describes the identification of the P. falciparum thrombospondin-related apical merozoite protein homologue in P. vivax (PvTRAMP) and examines its potential to be further evaluated as vaccine candidate. METHODS: The gene encoding PvTRAMP was identified through an extensive search of the databases hosting the genome sequence of P. vivax. Genes adjacent to pvtramp were identified in silico to determine the degree of similarity between the protein sequences encoded by equivalent chromosomic fragments in P. falciparum and Plasmodium knowlesi. The pvtramp gene was amplified from cDNA of P. vivax schizont stages, cloned and expressed in Escherichia coli. Anti-PvTRAMP antisera was obtained by inoculating rabbits with PvTRAMP B cell epitopes produced as synthetic peptides in order to assess its recognition in parasite lysates by Western blot and in intact parasites by indirect immunofluorescence. The recognition of recombinant PvTRAMP by sera from P. vivax-infected individuals living in endemic areas was also assessed by ELISA. RESULTS: The PfTRAMP homologue in P. vivax, here denoted as PvTRAMP, is a 340-amino-acid long antigen encoded by a single exon that could have a potential role in cytoadherence, as indicated by the presence of a thrombospondin structural homology repeat (TSR) domain. According to its transcription and expression profile, PvTRAMP is initially located at the parasite's apical end and later on the parasite surface. Recombinant PvTRAMP is recognized by sera from infected patients, therefore, indicating that it is targeted by the immune system during a natural infection with P. vivax. CONCLUSIONS: The results of this work support conducting further studies with PvTRAMP to evaluate its immunogenicity and protection-inducing ability in the Aotus animal model.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Superfície/genética , Merozoítos , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Superfície/imunologia , Western Blotting , Clonagem Molecular , Colômbia , Biologia Computacional , DNA Complementar/genética , DNA Complementar/isolamento & purificação , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Expressão Gênica , Humanos , Vacinas Antimaláricas/imunologia , Microscopia de Fluorescência , Proteínas de Protozoários/imunologia , Coelhos , Homologia de Sequência de Aminoácidos , Trombospondinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA