Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
EMBO J ; 40(4): e106394, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33411340

RESUMO

R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their distribution in genomes. A number of independent methods have been developed to visualize and map R-loops, but their results are at times discordant, leading to confusion. Here, we review the main existing methodologies for R-loop mapping and assess their limitations as well as the robustness of existing datasets. We offer a set of best practices to improve the reproducibility of maps, hoping that such guidelines could be useful for authors and referees alike. Finally, we propose a possible resolution for the apparent contradictions in R-loop mapping outcomes between antibody-based and RNase H1-based mapping approaches.


Assuntos
DNA/química , Genoma Humano , Instabilidade Genômica , Estruturas R-Loop , RNA/química , Humanos
2.
EMBO J ; 38(16): e101955, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31294478

RESUMO

R-loop disassembly by the human helicase Senataxin contributes to genome integrity and to proper transcription termination at a subset of RNA polymerase II genes. Whether Senataxin also contributes to transcription termination at other classes of genes has remained unclear. Here, we show that Sen1, one of two fission yeast homologues of Senataxin, promotes efficient termination of RNA polymerase III (RNAP3) transcription in vivo. In the absence of Sen1, RNAP3 accumulates downstream of RNAP3-transcribed genes and produces long exosome-sensitive 3'-extended transcripts. Importantly, neither of these defects was affected by the removal of R-loops. The finding that Sen1 acts as an ancillary factor for RNAP3 transcription termination in vivo challenges the pre-existing view that RNAP3 terminates transcription autonomously. We propose that Sen1 is a cofactor for transcription termination that has been co-opted by different RNA polymerases in the course of evolution.


Assuntos
DNA Helicases/metabolismo , RNA Helicases/metabolismo , RNA Polimerase III/genética , Schizosaccharomyces/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , RNA de Transferência/química , RNA de Transferência/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Terminação da Transcrição Genética
3.
Nucleic Acids Res ; 47(13): 6783-6795, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31066439

RESUMO

Three-stranded R-loop structures have been associated with genomic instability phenotypes. What underlies their wide-ranging effects on genome stability remains poorly understood. Here we combined biochemical and atomic force microscopy approaches with single molecule R-loop footprinting to demonstrate that R-loops formed at the model Airn locus in vitro adopt a defined set of three-dimensional conformations characterized by distinct shapes and volumes, which we call R-loop objects. Interestingly, we show that these R-loop objects impose specific physical constraints on the DNA, as revealed by the presence of stereotypical angles in the surrounding DNA. Biochemical probing and mutagenesis experiments revealed that the formation of R-loop objects at Airn is dictated by the extruded non-template strand, suggesting that R-loops possess intrinsic sequence-driven properties. Consistent with this, we show that R-loops formed at the fission yeast gene sum3 do not form detectable R-loop objects. Our results reveal that R-loops differ by their architectures and that the organization of the non-template strand is a fundamental characteristic of R-loops, which could explain that only a subset of R-loops is associated with replication-dependent DNA breaks.


Assuntos
DNA de Cadeia Simples/química , Conformação de Ácido Nucleico , Proteínas de Ciclo Celular/genética , RNA Helicases DEAD-box/genética , Dano ao DNA , Pegada de DNA , DNA Fúngico/química , DNA Fúngico/genética , DNA Recombinante/química , Cloreto de Lítio/farmacologia , Microscopia de Força Atômica , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico/efeitos dos fármacos , Hibridização de Ácido Nucleico , Plasmídeos/genética , RNA Longo não Codificante/química , Proteínas de Schizosaccharomyces pombe/genética , Transcrição Gênica
4.
Curr Genet ; 63(4): 577-589, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27909798

RESUMO

The packaging of DNA into chromosomes is a ubiquitous process that enables living organisms to structure and transmit their genome accurately through cell divisions. In the three kingdoms of life, the architecture and dynamics of chromosomes rely upon ring-shaped SMC (Structural Maintenance of Chromosomes) condensin complexes. To understand how condensin rings organize chromosomes, it is essential to decipher how they associate with chromatin filaments. Here, we use recent evidence to discuss the role played by nucleosomes and transcription factors in the loading of condensin at transcribed genes. We propose a model whereby cis-acting features nestled in the promoters of active genes synergistically attract condensin rings and promote their association with DNA.


Assuntos
Adenosina Trifosfatases/genética , Cromatina/genética , Cromossomos/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Complexos Multiproteicos/genética , Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Cromatina/química , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Cromossomos/química , Cromossomos/ultraestrutura , DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Genoma/genética , Mitose/genética , Complexos Multiproteicos/química , Nucleossomos/genética , Regiões Promotoras Genéticas
5.
PLoS Genet ; 10(11): e1004794, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25392932

RESUMO

Condensin-mediated chromosome condensation is essential for genome stability upon cell division. Genetic studies have indicated that the association of condensin with chromatin is intimately linked to gene transcription, but what transcription-associated feature(s) direct(s) the accumulation of condensin remains unclear. Here we show in fission yeast that condensin becomes strikingly enriched at RNA Pol III-transcribed genes when Swd2.2 and Sen1, two factors involved in the transcription process, are simultaneously deleted. Sen1 is an ATP-dependent helicase whose orthologue in Saccharomyces cerevisiae contributes both to terminate transcription of some RNA Pol II transcripts and to antagonize the formation of DNA:RNA hybrids in the genome. Using two independent mapping techniques, we show that DNA:RNA hybrids form in abundance at Pol III-transcribed genes in fission yeast but we demonstrate that they are unlikely to faciliate the recruitment of condensin. Instead, we show that Sen1 forms a stable and abundant complex with RNA Pol III and that Swd2.2 and Sen1 antagonize both the interaction of RNA Pol III with chromatin and RNA Pol III-dependent transcription. When Swd2.2 and Sen1 are lacking, the increased concentration of RNA Pol III and condensin at Pol III-transcribed genes is accompanied by the accumulation of topoisomerase I and II and by local nucleosome depletion, suggesting that Pol III-transcribed genes suffer topological stress. We provide evidence that this topological stress contributes to recruit and/or stabilize condensin at Pol III-transcribed genes in the absence of Swd2.2 and Sen1. Our data challenge the idea that a processive RNA polymerase hinders the binding of condensin and suggest that transcription-associated topological stress could in some circumstances facilitate the association of condensin.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/genética , Complexos Multiproteicos/genética , RNA Helicases/genética , RNA Polimerase III/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Anáfase/genética , Cromatina/genética , Cromossomos/genética , DNA/genética , Genoma Fúngico , Instabilidade Genômica/genética , Nucleossomos/genética , RNA/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética
6.
PLoS Genet ; 10(6): e1004415, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945319

RESUMO

Functional links connecting gene transcription and condensin-mediated chromosome condensation have been established in species ranging from prokaryotes to vertebrates. However, the exact nature of these links remains misunderstood. Here we show in fission yeast that the 3' end RNA processing factor Swd2.2, a component of the Cleavage and Polyadenylation Factor (CPF), is a negative regulator of condensin-mediated chromosome condensation. Lack of Swd2.2 does not affect the assembly of the CPF but reduces its association with chromatin. This causes only limited, context-dependent effects on gene expression and transcription termination. However, CPF-associated Swd2.2 is required for the association of Protein Phosphatase 1 PP1(Dis2) with chromatin, through an interaction with Ppn1, a protein that we identify as the fission yeast homologue of vertebrate PNUTS. We demonstrate that Swd2.2, Ppn1 and PP1Dis2 form an independent module within the CPF, which provides an essential function in the absence of the CPF-associated Ssu72 phosphatase. We show that Ppn1 and Ssu72, like Swd2.2, are also negative regulators of condensin-mediated chromosome condensation. We conclude that Swd2.2 opposes condensin-mediated chromosome condensation by facilitating the function of the two CPF-associated phosphatases PP1 and Ssu72.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Acetilação , Hidrolases Anidrido Ácido/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Complexos Multiproteicos/genética , Fosforilação , Terminação da Transcrição Genética
7.
Genes Dev ; 23(24): 2799-805, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20008930

RESUMO

Spindle checkpoint silencing is a critical step during mitosis that initiates chromosome segregation, yet surprisingly little is known about its mechanism. Protein phosphatase I (PP1) was shown recently to be a key player in this process, and in this issue of Genes & Deverlopment, Akiyoshi and colleagues (pp. 2887-2899) identify budding yeast Fin1p as a kinetochore-localized regulator of PP1 activity toward checkpoint targets. Here we review recent mechanistic insights and propose a working model for spindle checkpoint silencing.


Assuntos
Regulação Fúngica da Expressão Gênica , Fuso Acromático/metabolismo , Leveduras , Cinetocoros/metabolismo , Modelos Biológicos , Proteína Fosfatase 1/metabolismo , Transdução de Sinais , Leveduras/enzimologia , Leveduras/genética
8.
Methods Mol Biol ; 2528: 411-428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704207

RESUMO

By temporarily distorting the DNA double helix, the moving RNA polymerases can lead to the formation of non-B DNA structures. One of the most abundant and largest non-B DNA structures in the genome is the R-loop, a three-stranded structure forming when the nascent RNA hybridizes with its DNA template, thereby extruding the non-template DNA strand. Growing evidence suggests that at least a subset of R-loops could induce transcription stress and genome instability, although the direct, primary consequences of R-loop formation on the surrounding chromatin are still unclear.To understand the direct impact of R-loops on transcription and genome stability, accurate and quantitative mapping of R-loops is essential. R-loop mapping is commonly achieved using the antibody-based DNA:RNA Immunoprecipitation (DRIP) strategy. While it is reasonably straightforward to obtain robust DRIP enrichments from human cells, this has proved harder in yeast, where DRIP signals are often relatively weak, with a poor signal-to-noise ratio. Although it is unclear whether such weak signals stem from a technical or a biological reality, they make the accurate quantification of DRIP signals all the more important, especially when deep sequencing is used to monitor and quantify the distribution of R-loops genome-wide. Here we propose a DRIP protocol that has been optimized for the mapping and the quantification of R-loops in Schizosaccharomyces pombe but that can also be used in Saccharomyces cerevisiae. As a result, this protocol can be used to generate calibrated DRIP-seq data, where genomic DNA extracted from S. cerevisiae serves as spike-in reference.


Assuntos
RNA , Schizosaccharomyces , DNA/genética , Instabilidade Genômica , Humanos , Imunoprecipitação , RNA/química , RNA/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transcrição Gênica
9.
Curr Opin Cell Biol ; 14(2): 230-6, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11891123

RESUMO

Plant genomes encode large numbers of receptor kinases that are structurally related to the tyrosine and serine/threonine families of receptor kinase found in animals. Here, we describe recent advances in the characterisation of several of these plant receptor kinases at the molecular level, including the identification of receptor complexes, small polypeptide ligands and cytosolic proteins involved in signal transduction and receptor downregulation. Phylogenetic analysis indicates that plant receptor kinases have evolved independently of the receptor kinase families found in animals. This hypothesis is supported by functional studies that have revealed differences between receptor kinase signalling in plants and animals, particularly concerning their interactions with cytosolic proteins. Despite these dissimilarities, however, plant and animal receptor kinases share many common features, such as their single membrane-pass structure, their inclusion in membrane-associated complexes, the involvement of dimerisation and trans autophosphorylation in receptor activation, and the existence of inhibitors and phosphatases that downregulate receptor activity. These points of convergence may represent features that are essential for a functional receptor-kinase signalling system.


Assuntos
Plantas/enzimologia , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Animais , Regulação para Baixo , Evolução Molecular , Humanos , Ligantes , Monoéster Fosfórico Hidrolases/metabolismo , Filogenia , Plantas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/classificação
10.
Life Sci Alliance ; 4(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33771877

RESUMO

The mechanisms leading to the accumulation of the SMC complexes condensins around specific transcription units remain unclear. Observations made in bacteria suggested that RNA polymerases (RNAPs) constitute an obstacle to SMC translocation, particularly when RNAP and SMC travel in opposite directions. Here we show in fission yeast that gene termini harbour intrinsic condensin-accumulating features whatever the orientation of transcription, which we attribute to the frequent backtracking of RNAP at gene ends. Consistent with this, to relocate backtracked RNAP2 from gene termini to gene bodies was sufficient to cancel the accumulation of condensin at gene ends and to redistribute it evenly within transcription units, indicating that RNAP backtracking may play a key role in positioning condensin. Formalization of this hypothesis in a mathematical model suggests that the inclusion of a sub-population of RNAP with longer dwell-times is essential to fully recapitulate the distribution profiles of condensin around active genes. Taken together, our data strengthen the idea that dense arrays of proteins tightly bound to DNA alter the distribution of condensin on chromosomes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , RNA Polimerase II/metabolismo , Adenosina Trifosfatases/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Mitose/genética , Complexos Multiproteicos/genética , RNA Polimerase II/fisiologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica/genética
11.
Trends Cell Biol ; 15(5): 231-3, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866025

RESUMO

To ensure the accuracy of chromosome segregation in mitosis, the spindle checkpoint blocks the activity of the anaphase-promoting complex APC/C until all chromosomes are properly bi-orientated on the metaphase spindle. How the checkpoint machinery actually inhibits the APC/C is still unclear. A new paper by Tang and coworkers helps further our understanding of this complex and fundamental process.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Mitose/fisiologia , Proteínas Quinases/metabolismo , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Humanos , Mitose/genética , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos
12.
Mol Biol Cell ; 18(5): 1657-69, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17301288

RESUMO

Fission yeast has two members of the Shugoshin family, Sgo1 and Sgo2. Although Sgo1 has clearly been established as a protector of centromere cohesion in meiosis I, the roles of Sgo2 remain elusive. Here we show that Sgo2 is required to ensure proper chromosome biorientation upon recovery from a prolonged spindle checkpoint arrest. Consistent with this, Sgo2 is essential for maintaining the Passenger proteins on centromeres upon checkpoint activation. Interestingly, lack of Sgo2 has a more penetrant effect on the localization of Survivin than on the two other Passenger proteins INCENP and Aurora B, and the Survivin-INCENP complex but not the INCENP-Aurora B complex is destabilized in the absence of Sgo2. Finally we show that the conserved C-terminus of Sgo2 is crucial to maintain Sgo2 and Passenger proteins localization on centromeres upon prolonged checkpoint activation. Taken together, our results demonstrate that Sgo2 is important for chromosome biorientation and that it controls docking of the Passenger proteins on chromosomes in early mitotic cells.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Aurora Quinases , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mitose , Modelos Biológicos , Complexos Multiproteicos , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Telômero/metabolismo
13.
Curr Biol ; 15(24): 2263-70, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16360688

RESUMO

Meiosis consists of a single round of DNA replication followed by two consecutive nuclear divisions. During the first division (MI), sister kinetochores must orient toward the same pole to favor reductional segregation. Correct chromosome segregation during the second division (MII) requires the retention of centromeric cohesion until anaphase II. The spindle checkpoint protein Bub1 is essential for both processes in fission yeast . When bub1 is deleted, the Shugoshin protein Sgo1 is not recruited to centromeres, cohesin Rec8 does not persist at centromeres, and sister-chromatid cohesion is lost by the end of MI. Deletion of bub1 also affects kinetochore orientation because sister centromeres can move to opposite spindle poles in approximately 30% of MI divisions. We show here that these two functions are separable within the Bub1 protein. The N terminus of Bub1 is necessary and sufficient for Sgo1 targeting to centromeres and the protection of cohesion, whereas the C-terminal kinase domain acts together with Sgo2, the second fission-yeast Shugoshin protein, to promote sister-kinetochore co-orientation during MI. Additional analyses suggest that the protection of centromeric cohesion does not operate when sister kinetochores attach to opposite spindle poles during MI. Sgo1-mediated protection of centromere cohesion might therefore be regulated by the mode of kinetochore attachment.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Meiose/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Imunoprecipitação da Cromatina , Proteínas de Fluorescência Verde , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína
14.
Mol Biol Cell ; 16(1): 385-95, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15525673

RESUMO

During mitosis, the spindle assembly checkpoint (SAC) responds to faulty attachments between kinetochores and the mitotic spindle by imposing a metaphase arrest until the defect is corrected, thereby preventing chromosome missegregation. A genetic screen to isolate SAC mutants in fission yeast yielded point mutations in three fission yeast SAC genes: mad1, bub3, and bub1. The bub1-A78V mutant is of particular interest because it produces a wild-type amount of protein that is mutated in the conserved but uncharacterized Mad3-like region of Bub1p. Characterization of mutant cells demonstrates that the alanine at position 78 in the Mad3-like domain of Bub1p is required for: 1) cell cycle arrest induced by SAC activation; 2) kinetochore accumulation of Bub1p in checkpoint-activated cells; 3) recruitment of Bub3p and Mad3p, but not Mad1p, to kinetochores in checkpoint-activated cells; and 4) nuclear accumulation of Bub1p, Bub3p, and Mad3p, but not Mad1p, in cycling cells. Increased targeting of Bub1p-A78V to the nucleus by an exogenous nuclear localization signal does not significantly increase kinetochore localization or SAC function, but GFP fused to the isolated Bub1p Mad 3-like accumulates in the nucleus. These data indicate that Bub1p-A78V is defective in both nuclear accumulation and kinetochore targeting and that a threshold level of nuclear Bub1p is necessary for the nuclear accumulation of Bub3p and Mad3p.


Assuntos
Proteínas de Ciclo Celular/genética , Mutação , Proteínas Quinases/genética , Schizosaccharomyces/genética , Fuso Acromático , Alanina/química , Alelos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Proteínas Fúngicas , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Interfase , Cinetocoros/metabolismo , Metáfase , Microscopia de Fluorescência , Mitose , Modelos Genéticos , Mutagênese Sítio-Dirigida , Proteínas Nucleares , Mutação Puntual , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe
15.
Noncoding RNA ; 4(2)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29657305

RESUMO

R-loops are evolutionarily conserved three-stranded structures that result from the formation of stable DNA:RNA hybrids in the genome. R-loops have attracted increasing interest in recent years as potent regulators of gene expression and genome stability. In particular, their strong association with severe replication stress makes them potential oncogenic structures. Despite their importance, the rules that govern their formation and their dynamics are still controversial and an in-depth description of their direct impact on chromatin organization and DNA transactions is still lacking. To better understand the diversity of R-loop functions, reliable, accurate, and quantitative mapping techniques, as well as functional assays are required. Here, I review the different approaches that are currently used to do so and to highlight their individual strengths and weaknesses. In particular, I review the advantages and disadvantages of using the S9.6 antibody to map R-loops in vivo in an attempt to propose guidelines for best practices.

16.
J Mol Biol ; 430(3): 272-284, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29289567

RESUMO

R-loops, which result from the formation of stable DNA:RNA hybrids, can both threaten genome integrity and act as physiological regulators of gene expression and chromatin patterning. To characterize R-loops in fission yeast, we used the S9.6 antibody-based DRIPc-seq method to sequence the RNA strand of R-loops and obtain strand-specific R-loop maps at near nucleotide resolution. Surprisingly, preliminary DRIPc-seq experiments identified mostly RNase H-resistant but exosome-sensitive RNAs that mapped to both DNA strands and resembled RNA:RNA hybrids (dsRNAs), suggesting that dsRNAs form widely in fission yeast. We confirmed in vitro that S9.6 can immuno-precipitate dsRNAs and provide evidence that dsRNAs can interfere with its binding to R-loops. dsRNA elimination by RNase III treatment prior to DRIPc-seq allowed the genome-wide and strand-specific identification of genuine R-loops that responded in vivo to RNase H levels and displayed classical features associated with R-loop formation. We also found that most transcripts whose levels were altered by in vivo manipulation of RNase H levels did not form detectable R-loops, suggesting that prolonged manipulation of R-loop levels could indirectly alter the transcriptome. We discuss the implications of our work in the design of experimental strategies to probe R-loop functions.


Assuntos
Anticorpos/química , RNA de Cadeia Dupla/análise , RNA Fúngico/análise , Schizosaccharomyces/química , Análise de Sequência de RNA/métodos , Imunoprecipitação/métodos , Conformação de Ácido Nucleico , RNA de Cadeia Dupla/genética , RNA Fúngico/genética , Ribonuclease H/química , Schizosaccharomyces/genética , Transcriptoma
17.
Mol Cell Biol ; 24(22): 9786-801, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15509783

RESUMO

Several lines of evidence suggest that kinetochores are organizing centers for the spindle checkpoint response and the synthesis of a "wait anaphase" signal in cases of incomplete or improper kinetochore-microtubule attachment. Here we characterize Schizosaccharomyces pombe Bub3p and study the recruitment of spindle checkpoint components to kinetochores. We demonstrate by chromatin immunoprecipitation that they all interact with the central domain of centromeres, consistent with their role in monitoring kinetochore-microtubule interactions. Bub1p and Bub3p are dependent upon one another, but independent of the Mad proteins, for their kinetochore localization. We demonstrate a clear role for the highly conserved N-terminal domain of Bub1p in the robust targeting of Bub1p, Bub3p, and Mad3p to kinetochores and show that this is crucial for an efficient checkpoint response. Surprisingly, neither this domain nor kinetochore localization is required for other functions of Bub1p in chromosome segregation.


Assuntos
Cinetocoros/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , DNA Fúngico/genética , Genes Fúngicos , Mitose , Modelos Biológicos , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Estrutura Terciária de Proteína , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/metabolismo
18.
Trends Plant Sci ; 8(5): 231-7, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12758041

RESUMO

Cell-membrane-located receptor kinases play important roles in many plant signal-transduction pathways. Exciting progress has been made in recent years with the characterization of four ligand-receptor systems involved in physiological processes as diverse as self-pollen rejection, stem-cell maintenance and differentiation at the shoot meristem, the response to the brassinosteroid hormones and the innate response to bacterial pathogens. These new findings emphasize the remarkably high diversity of these signalling pathways, although some downstream components are shared. This observation supports the idea that the wide diversification of plant receptors is associated with a high degree of specialization, one receptor potentially regulating a single developmental process. However, the possibility that one receptor might have a dual recognition function cannot be ruled out.


Assuntos
Fosfotransferases/metabolismo , Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Ligantes , Plantas/enzimologia
19.
Transcription ; 6(1): 12-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25634470

RESUMO

The highly conserved condensin complex is essential for the condensation and integrity of chromosomes through cell division. Published data argue that high levels of transcription contribute to specify some condensin-binding sites on chromosomes but the exact role of transcription in this process remains elusive. Here we discuss our recent data addressing the role of transcription in establishing a condensin-binding site.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Transcrição Gênica , Sítios de Ligação , Cromossomos Humanos/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Cell Rep ; 6(5): 892-905, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24565511

RESUMO

Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.


Assuntos
Adenosina Trifosfatases/metabolismo , Caseína Quinase II/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Acetilação , Centrômero/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Mitose/fisiologia , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA