Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 147, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217873

RESUMO

BACKGROUND: Antimicrobial resistant infections continue to be a leading global public health crisis. Mobile genetic elements, such as plasmids, have been shown to play a major role in the dissemination of antimicrobial resistance (AMR) genes. Despite its ongoing threat to human health, surveillance of AMR in the United States is often limited to phenotypic resistance. Genomic analyses are important to better understand the underlying resistance mechanisms, assess risk, and implement appropriate prevention strategies. This study aimed to investigate the extent of plasmid mediated antimicrobial resistance that can be inferred from short read sequences of carbapenem resistant E. coli (CR-Ec) in Alameda County, California. E. coli isolates from healthcare locations in Alameda County were sequenced using an Illumina MiSeq and assembled with Unicycler. Genomes were categorized according to predefined multilocus sequence typing (MLST) and core genome multilocus sequence typing (cgMLST) schemes. Resistance genes were identified and corresponding contigs were predicted to be plasmid-borne or chromosome-borne using two bioinformatic tools (MOB-suite and mlplasmids). RESULTS: Among 82 of CR-Ec identified between 2017 and 2019, twenty-five sequence types (STs) were detected. ST131 was the most prominent (n = 17) followed closely by ST405 (n = 12). blaCTX-M were the most common ESBL genes and just over half (18/30) of these genes were predicted to be plasmid-borne by both MOB-suite and mlplasmids. Three genetically related groups of E. coli isolates were identified with cgMLST. One of the groups contained an isolate with a chromosome-borne blaCTX-M-15 gene and an isolate with a plasmid-borne blaCTX-M-15 gene. CONCLUSIONS: This study provides insights into the dominant clonal groups driving carbapenem resistant E. coli infections in Alameda County, CA, USA clinical sites and highlights the relevance of whole-genome sequencing in routine local genomic surveillance. The finding of multi-drug resistant plasmids harboring high-risk resistance genes is of concern as it indicates a risk of dissemination to previously susceptible clonal groups, potentially complicating clinical and public health intervention.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Carbapenêmicos/farmacologia , Tipagem de Sequências Multilocus , Antibacterianos/farmacologia , Plasmídeos/genética , Infecções por Escherichia coli/epidemiologia , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
2.
Antimicrob Agents Chemother ; 65(11): e0228820, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370572

RESUMO

Laboratories submit all carbapenem-resistant Enterobacter, Escherichia coli, and Klebsiella species to the Alameda County Public Health Department (ACPHD). ACPHD evaluated 75 isolates submitted during 9 months for susceptibility to imipenem-relebactam (I-R) and, using whole-genome sequencing, identified ß-lactamase genes. Of 60 (80%) isolates susceptible to I-R, 8 (13%) had detectable carbapenemase genes, including 4 KPC, two NDM, and two OXA-48-like; we described the relationship between the presence of ß-lactamase resistance genes and susceptibility to I-R.


Assuntos
Carbapenêmicos , Farmacorresistência Bacteriana , Gammaproteobacteria , Imipenem , Antibacterianos/farmacologia , Compostos Azabicíclicos , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/genética , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
3.
Nucleic Acids Res ; 46(7): e42, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361139

RESUMO

Much of the within species genetic variation is in the form of single nucleotide polymorphisms (SNPs), typically detected by whole genome sequencing (WGS) or microarray-based technologies. However, WGS produces mostly uninformative reads that perfectly match the reference, while microarrays require genome-specific reagents. We have developed Diff-seq, a sequencing-based mismatch detection assay for SNP discovery without the requirement for specialized nucleic-acid reagents. Diff-seq leverages the Surveyor endonuclease to cleave mismatched DNA molecules that are generated after cross-annealing of a complex pool of DNA fragments. Sequencing libraries enriched for Surveyor-cleaved molecules result in increased coverage at the variant sites. Diff-seq detected all mismatches present in an initial test substrate, with specific enrichment dependent on the identity and context of the variation. Application to viral sequences resulted in increased observation of variant alleles in a biologically relevant context. Diff-Seq has the potential to increase the sensitivity and efficiency of high-throughput sequencing in the detection of variation.


Assuntos
Pareamento Incorreto de Bases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Alelos , Fragmentação do DNA , Genoma/genética , Genoma Viral/genética , HIV/genética , Integrase de HIV/genética , Transcriptase Reversa do HIV/genética , Humanos , Sequenciamento Completo do Genoma , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
4.
J Clin Microbiol ; 56(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29618499

RESUMO

The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy.


Assuntos
Farmacorresistência Viral/genética , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação/genética , Fármacos Anti-HIV/uso terapêutico , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Integrase de HIV/genética , Transcriptase Reversa do HIV/genética , Humanos , Testes de Sensibilidade Microbiana , RNA Viral/genética , Kit de Reagentes para Diagnóstico , Carga Viral
5.
J Infect Dis ; 216(3): 387-391, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859436

RESUMO

Minority variant human immunodeficiency virus type 1 (HIV-1) nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations are associated with an increased risk of virological failure during treatment with NNRTI-containing regimens. To determine whether individuals to whom variants with isolated NNRTI-associated drug resistance were transmitted are at increased risk of virological failure during treatment with a non-NNRTI-containing regimen, we identified minority variant resistance mutations in 33 individuals with isolated NNRTI-associated transmitted drug resistance and 49 matched controls. We found similar proportions of overall and nucleoside reverse transcriptase inhibitor-associated minority variant resistance mutations in both groups, suggesting that isolated NNRTI-associated transmitted drug resistance may not be a risk factor for virological failure during treatment with a non-NNRTI-containing regimen.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Inibidores da Transcriptase Reversa/uso terapêutico , Adulto , Contagem de Linfócito CD4 , Feminino , HIV-1/efeitos dos fármacos , Humanos , Masculino , Mutação , Análise de Sequência de DNA
6.
J Virol ; 90(13): 6058-6070, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099321

RESUMO

UNLABELLED: HIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS. IMPORTANCE: Most antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug resistance and occur mainly in individuals receiving antiretroviral drugs. Some variants result from a human cellular defense mechanism called APOBEC-mediated hypermutation. Many variants result from naturally occurring mutation. Some variants may represent technical artifacts. We studied PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to quantify variation at each amino acid position in these three HIV-1 proteins. We performed analyses to determine which amino acid variants resulted from antiretroviral drug selection pressure, APOBEC-mediated editing, and naturally occurring variation. Our results provide information essential to clinical, research, and public health laboratories performing genotypic resistance testing by sequencing HIV-1 PR, RT, and IN.


Assuntos
Desaminases APOBEC/metabolismo , Variação Genética , Integrase de HIV/genética , Protease de HIV/genética , Transcriptase Reversa do HIV/genética , HIV-1/genética , Desaminases APOBEC/genética , Sequência de Aminoácidos , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Integrase de HIV/química , Protease de HIV/química , Transcriptase Reversa do HIV/química , HIV-1/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Inibidores da Transcriptase Reversa/uso terapêutico
7.
J Clin Microbiol ; 54(10): 2597-601, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27535684

RESUMO

HIV-1 RNA quantitation in plasma, or virus load testing, is the primary method by which the response to antiretroviral therapy is monitored. Here we describe evaluation of the Aptima HIV-1 Quant Dx assay (Aptima) performed on the automated Panther system. The clinical performance of Aptima was compared to that of the Cobas AmpliPrep/Cobas TaqMan HIV-1 Test v2.0 (CAP/CTM) using 162 EDTA plasma samples collected from patients undergoing HIV-1 monitoring. Overall agreement was 84.0% (136/162), with a kappa statistic of 0.723 (standard error, 0.047; 95% confidence interval [CI], 0.630 to 0.815), indicating substantial agreement. Using the 86 clinical samples quantifiable by both methods, Passing-Bablok regression revealed a regression line of Y = (1.069 × X) - 0.346 (95% CI of the slope [1.003 to 1.139] and intercept [-0.666 to -0.074]), and Bland-Altman analysis demonstrated a mean difference (Aptima-CAP/CTM) of -0.075 log10 copies/ml (95% limits of agreement of -0.624 to 0.475), consistent with negative bias. Comparison of Aptima results for paired dried blood spot (DBS) and plasma specimens archived from participants in the Peninsula AIDS Research Cohort Study (PARC) demonstrated an overall agreement of 94.7% (90/95) when 1,000 copies/ml was used as the threshold. In conclusion, the Aptima HIV-1 Quant Dx assay provides a suitable alternative for HIV-1 monitoring in plasma and DBS.


Assuntos
Sangue/virologia , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Carga Viral/métodos , Monitoramento de Medicamentos/métodos , HIV-1/genética , Humanos , RNA Viral/análise , RNA Viral/genética
8.
PLoS Med ; 12(4): e1001810, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849352

RESUMO

BACKGROUND: Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes. METHODS AND FINDINGS: We reviewed all GenBank submissions of HIV-1 reverse transcriptase sequences with or without protease and identified 287 studies published between March 1, 2000, and December 31, 2013, with more than 25 recently or chronically infected ARV-naïve individuals. These studies comprised 50,870 individuals from 111 countries. Each set of study sequences was analyzed for phylogenetic clustering and the presence of 93 surveillance drug-resistance mutations (SDRMs). The median overall TDR prevalence in sub-Saharan Africa (SSA), south/southeast Asia (SSEA), upper-income Asian countries, Latin America/Caribbean, Europe, and North America was 2.8%, 2.9%, 5.6%, 7.6%, 9.4%, and 11.5%, respectively. In SSA, there was a yearly 1.09-fold (95% CI: 1.05-1.14) increase in odds of TDR since national ARV scale-up attributable to an increase in non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance. The odds of NNRTI-associated TDR also increased in Latin America/Caribbean (odds ratio [OR] = 1.16; 95% CI: 1.06-1.25), North America (OR = 1.19; 95% CI: 1.12-1.26), Europe (OR = 1.07; 95% CI: 1.01-1.13), and upper-income Asian countries (OR = 1.33; 95% CI: 1.12-1.55). In SSEA, there was no significant change in the odds of TDR since national ARV scale-up (OR = 0.97; 95% CI: 0.92-1.02). An analysis limited to sequences with mixtures at less than 0.5% of their nucleotide positions­a proxy for recent infection­yielded trends comparable to those obtained using the complete dataset. Four NNRTI SDRMs­K101E, K103N, Y181C, and G190A­accounted for >80% of NNRTI-associated TDR in all regions and subtypes. Sixteen nucleoside reverse transcriptase inhibitor (NRTI) SDRMs accounted for >69% of NRTI-associated TDR in all regions and subtypes. In SSA and SSEA, 89% of NNRTI SDRMs were associated with high-level resistance to nevirapine or efavirenz, whereas only 27% of NRTI SDRMs were associated with high-level resistance to zidovudine, lamivudine, tenofovir, or abacavir. Of 763 viruses with TDR in SSA and SSEA, 725 (95%) were genetically dissimilar; 38 (5%) formed 19 sequence pairs. Inherent limitations of this study are that some cohorts may not represent the broader regional population and that studies were heterogeneous with respect to duration of infection prior to sampling. CONCLUSIONS: Most TDR strains in SSA and SSEA arose independently, suggesting that ARV regimens with a high genetic barrier to resistance combined with improved patient adherence may mitigate TDR increases by reducing the generation of new ARV-resistant strains. A small number of NNRTI-resistance mutations were responsible for most cases of high-level resistance, suggesting that inexpensive point-mutation assays to detect these mutations may be useful for pre-therapy screening in regions with high levels of TDR. In the context of a public health approach to ARV therapy, a reliable point-of-care genotypic resistance test could identify which patients should receive standard first-line therapy and which should receive a protease-inhibitor-containing regimen.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Sequência de Bases , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/genética , HIV-1/genética , Mutação , África , América , Fármacos Anti-HIV/farmacologia , Ásia , Europa (Continente) , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Humanos , Epidemiologia Molecular , Filogenia
9.
J Antimicrob Chemother ; 69(1): 12-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23934770

RESUMO

OBJECTIVES: The introduction of two new non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the past 5 years and the identification of novel NNRTI-associated mutations have made it necessary to reassess the extent of phenotypic NNRTI cross-resistance. METHODS: We analysed a dataset containing 1975, 1967, 519 and 187 genotype-phenotype correlations for nevirapine, efavirenz, etravirine and rilpivirine, respectively. We used linear regression to estimate the effects of RT mutations on susceptibility to each of these NNRTIs. RESULTS: Sixteen mutations at 10 positions were significantly associated with the greatest contribution to reduced phenotypic susceptibility (≥10-fold) to one or more NNRTIs, including: 14 mutations at six positions for nevirapine (K101P, K103N/S, V106A/M, Y181C/I/V, Y188C/L and G190A/E/Q/S); 10 mutations at six positions for efavirenz (L100I, K101P, K103N, V106M, Y188C/L and G190A/E/Q/S); 5 mutations at four positions for etravirine (K101P, Y181I/V, G190E and F227C); and 6 mutations at five positions for rilpivirine (L100I, K101P, Y181I/V, G190E and F227C). G190E, a mutation that causes high-level nevirapine and efavirenz resistance, also markedly reduced susceptibility to etravirine and rilpivirine. K101H, E138G, V179F and M230L mutations, associated with reduced susceptibility to etravirine and rilpivirine, were also associated with reduced susceptibility to nevirapine and/or efavirenz. CONCLUSIONS: The identification of novel cross-resistance patterns among approved NNRTIs illustrates the need for a systematic approach for testing novel NNRTIs against clinical virus isolates with major NNRTI-resistance mutations and for testing older NNRTIs against virus isolates with mutations identified during the evaluation of a novel NNRTI.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Infecções por HIV/virologia , HIV/efeitos dos fármacos , DNA Polimerase Dirigida por RNA/genética , Inibidores da Transcriptase Reversa/farmacologia , Técnicas de Genotipagem , HIV/genética , HIV/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana
10.
Artigo em Inglês | MEDLINE | ID: mdl-38698944

RESUMO

Objective: Carbapenem-resistant organisms (CROs) are an urgent health threat. Since 2017, Alameda County Health Public Health Department (ACPHD) mandates reporting of carbapenem-resistant Enterobacterales (CRE) and encourages voluntary reporting of non-CRE CROs including carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-resistant Pseudomonas aeruginosa (CRPA). Surveillance data from ACPHD were analyzed to describe the epidemiology of CROs and target public health interventions. Methods: Healthcare facilities in Alameda County reported CRO cases and submitted isolates to ACPHD to characterize carbapenemase genes; deaths were identified via the California Electronic Death Registration System. CRO cases with isolates resistant to one or more carbapenems were analyzed from surveillance data from July 2019 to June 2021. Results: Four hundred and forty-two cases of CROs were reported to Alameda County from 408 patients. The county case rate for CROs was 29 cases per 100,000 population, and cases significantly increased over the 2-year period. CRPA was most commonly reported (157 cases, 36%), and cases of CRAB increased 1.83-fold. One-hundred eighty-six (42%) cases were identified among residents of long-term care facilities; 152 (37%) patients had died by January 2022. One hundred and seven (24%) cases produced carbapenemases. Conclusions: The high burden of CROs in Alameda County highlights the need for continued partnership on reporting, testing, and infection prevention to limit the spread of resistant organisms. A large proportion of cases were identified in vulnerable long-term care residents, and CRAB was an emerging CRO among this population. Screening for CROs and surveillance at the local level are important to understand epidemiology and implement public health interventions.

11.
Antimicrob Agents Chemother ; 57(9): 4290-4299, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23796938

RESUMO

The many genetic manifestations of HIV-1 protease inhibitor (PI) resistance present challenges to research into the mechanisms of PI resistance and the assessment of new PIs. To address these challenges, we created a panel of recombinant multi-PI-resistant infectious molecular clones designed to represent the spectrum of clinically relevant multi-PI-resistant viruses. To assess the representativeness of this panel, we examined the sequences of the panel's viruses in the context of a correlation network of PI resistance amino acid substitutions in sequences from more than 10,000 patients. The panel of recombinant infectious molecular clones comprised 29 of 41 study-defined PI resistance amino acid substitutions and 23 of the 27 tightest amino acid substitution clusters. Based on their phenotypic properties, the clones were classified into four groups with increasing cross-resistance to the PIs most commonly used for salvage therapy: lopinavir (LPV), tipranavir (TPV), and darunavir (DRV). The panel of recombinant infectious molecular clones has been made available without restriction through the NIH AIDS Research and Reference Reagent Program. The public availability of the panel makes it possible to compare the inhibitory activities of different PIs with one another. The diversity of the panel and the high-level PI resistance of its clones suggest that investigational PIs active against the clones in this panel will retain antiviral activity against most if not all clinically relevant PI-resistant viruses.

12.
J Antimicrob Chemother ; 68(2): 414-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23085775

RESUMO

OBJECTIVES: To determine whether pan-protease inhibitor (PI)-resistant virus populations are composed predominantly of viruses with resistance to all PIs or of diverse virus populations with resistance to different subsets of PIs. METHODS: We performed deep sequencing of plasma virus samples from nine patients with high-level genotypic and/or phenotypic resistance to all licensed PIs. The nine virus samples had a median of 12 PI resistance mutations by direct PCR Sanger sequencing. RESULTS: For each of the nine virus samples, deep sequencing showed that each of the individual viruses within a sample contained nearly all of the mutations detected by Sanger sequencing. Indeed, a median of 94.9% of deep sequence reads had each of the PI resistance mutations present as a single chromatographic peak in the Sanger sequence. A median of 5.0% of reads had all but one of the Sanger mutations that were not part of an electrophoretic mixture. CONCLUSIONS: The collinearity of PI resistance mutations in the nine virus samples demonstrated that pan-PI-resistant viruses are able to replicate in vivo despite their highly mutated protease enzymes. We hypothesize that the marked collinearity of PI resistance mutations in pan-PI-resistant virus populations results from the unique requirements for multi-PI resistance and the extensive cross-resistance conferred by many of the accessory PI resistance mutations.


Assuntos
Farmacorresistência Viral , Inibidores da Protease de HIV/farmacologia , Protease de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Mutação de Sentido Incorreto , HIV-1/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Plasma/virologia , RNA Viral/genética
13.
PLoS One ; 18(2): e0277575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795668

RESUMO

Whole genome sequencing (WGS) of clinical bacterial isolates has the potential to transform the fields of diagnostics and public health. To realize this potential, bioinformatic software that reports identification results needs to be developed that meets the quality standards of a diagnostic test. We developed GAMBIT (Genomic Approximation Method for Bacterial Identification and Tracking) using k-mer based strategies for identification of bacteria based on WGS reads. GAMBIT incorporates this algorithm with a highly curated searchable database of 48,224 genomes. Herein, we describe validation of the scoring methodology, parameter robustness, establishment of confidence thresholds and the curation of the reference database. We assessed GAMBIT by way of validation studies when it was deployed as a laboratory-developed test in two public health laboratories. This method greatly reduces or eliminates false identifications which are often detrimental in a clinical setting.


Assuntos
Bactérias , Genômica , Sequenciamento Completo do Genoma/métodos , Bactérias/genética , Software , Biologia Computacional , Genoma Bacteriano
14.
Front Public Health ; 11: 1198213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593727

RESUMO

Introduction: The clinical incidence of antimicrobial-resistant fungal infections has dramatically increased in recent years. Certain fungal pathogens colonize various body cavities, leading to life-threatening bloodstream infections. However, the identification and characterization of fungal isolates in laboratories remain a significant diagnostic challenge in medicine and public health. Whole-genome sequencing provides an unbiased and uniform identification pipeline for fungal pathogens but most bioinformatic analysis pipelines focus on prokaryotic species. To this end, TheiaEuk_Illumina_PE_PHB (TheiaEuk) was designed to focus on genomic analysis specialized to fungal pathogens. Methods: TheiaEuk was designed using containerized components and written in the workflow description language (WDL) to facilitate deployment on the cloud-based open bioinformatics platform Terra. This species-agnostic workflow enables the analysis of fungal genomes without requiring coding, thereby reducing the entry barrier for laboratory scientists. To demonstrate the usefulness of this pipeline, an ongoing outbreak of C. auris in southern Nevada was investigated. We performed whole-genome sequence analysis of 752 new C. auris isolates from this outbreak. Furthermore, TheiaEuk was utilized to observe the accumulation of mutations in the FKS1 gene over the course of the outbreak, highlighting the utility of TheiaEuk as a monitor of emerging public health threats when combined with whole-genome sequencing surveillance of fungal pathogens. Results: A primary result of this work is a curated fungal database containing 5,667 unique genomes representing 245 species. TheiaEuk also incorporates taxon-specific submodules for specific species, including clade-typing for Candida auris (C. auris). In addition, for several fungal species, it performs dynamic reference genome selection and variant calling, reporting mutations found in genes currently associated with antifungal resistance (FKS1, ERG11, FUR1). Using genome assemblies from the ATCC Mycology collection, the taxonomic identification module used by TheiaEuk correctly assigned genomes to the species level in 126/135 (93.3%) instances and to the genus level in 131/135 (97%) of instances, and provided zero false calls. Application of TheiaEuk to actual specimens obtained in the course of work at a local public health laboratory resulted in 13/15 (86.7%) correct calls at the species level, with 2/15 called at the genus level. It made zero incorrect calls. TheiaEuk accurately assessed clade type of Candida auris in 297/302 (98.3%) of instances. Discussion: TheiaEuk demonstrated effectiveness in identifying fungal species from whole genome sequence. It further showed accuracy in both clade-typing of C. auris and in the identification of mutations known to associate with drug resistance in that organism.


Assuntos
Biologia Computacional , Genoma Fúngico , Fluxo de Trabalho , Genômica , Surtos de Doenças
15.
Antimicrob Agents Chemother ; 56(8): 4522-4, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22664973

RESUMO

We created a panel of 10 representative multi-nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant recombinant infectious molecular HIV-1 clones to assist researchers studying NNRTI resistance or developing novel NNRTIs. The cloned viruses contain most of the major NNRTI resistance mutations and most of the significantly associated mutation pairs that we identified in two network analyses. Each virus in the panel has intermediate- or high-level resistance to all or three of the four most commonly used NNRTIs.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral Múltipla/genética , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Alcinos , Fármacos Anti-HIV/uso terapêutico , Benzoxazinas/farmacologia , Benzoxazinas/uso terapêutico , Clonagem Molecular , Ciclopropanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/genética , HIV-1/genética , Humanos , Mutação , Nevirapina/farmacologia , Nevirapina/uso terapêutico , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Inibidores da Transcriptase Reversa/uso terapêutico , Rilpivirina
16.
J Infect Dis ; 203(9): 1204-14, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21459813

RESUMO

With the approval in 2007 of the first integrase inhibitor (INI), raltegravir, clinicians became better able to suppress virus replication in patients infected with human immunodeficiency virus type 1 (HIV-1) who were harboring many of the most highly drug-resistant viruses. Raltegravir also provided clinicians with additional options for first-line therapy and for the simplification of regimens in patients with stable virological suppression. Two additional INIs in advanced clinical development-elvitegravir and S/GSK1349572-may prove equally versatile. However, the INIs have a relatively low genetic barrier to resistance in that 1 or 2 mutations are capable of causing marked reductions in susceptibility to raltegravir and elvitegravir, the most well-studied INIs. This perspective reviews the genetic mechanisms of INI resistance and their implications for initial INI therapy, the treatment of antiretroviral-experienced patients, and regimen simplification.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Integrase de HIV/genética , HIV-1/efeitos dos fármacos , Pirrolidinonas/farmacologia , Fármacos Anti-HIV/uso terapêutico , Integrase de HIV/metabolismo , HIV-1/isolamento & purificação , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pirrolidinonas/uso terapêutico , Raltegravir Potássico
17.
Antibiotics (Basel) ; 11(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36551451

RESUMO

The prevalence of carbapenem-resistant Enterobacterales (CRE) has been increasing since the year 2000 and is considered a serious public health threat according to the Centers for Disease Control and Prevention. Limited studies have genotyped Carbapenem-resistant Escherichia coli using whole genome sequencing to characterize the most common lineages and resistance and virulence genes. The aim of this study was to characterize sequence data from carbapenem-resistant E. coli isolates (n = 82) collected longitudinally by the Alameda County Public Health Laboratory (ACPHL) between 2017 and 2019. E. coli genomes were screened for antibiotic resistance genes (ARGs) and extraintestinal pathogenic E. coli virulence factor genes (VFGs). The carbapenem-resistant E. coli lineages were diverse, with 24 distinct sequence types (STs) represented, including clinically important STs: ST131, ST69, ST95, and ST73. All Ambler classes of Carbapenemases were present, with NDM-5 being most the frequently detected. Nearly all isolates (90%) contained genes encoding resistance to third-generation cephalosporins; blaCTX-M genes were most common. The number of virulence genes present within pandemic STs was significantly higher than the number in non-pandemic lineages (p = 0.035). Virulence genes fimA (92%), trat (71%), kpsM (54%), and iutA (46%) were the most prevalent within the isolates. Considering the public health risk associated with CRE, these data enhance our understanding of the diversity of clinically important E. coli that are circulating in Alameda County, California.

19.
Antimicrob Agents Chemother ; 54(2): 934-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19917747

RESUMO

We created an HIV-1 cloning vector, pNL4.3DeltaIN, to generate recombinant infectious molecular clones for analysis of patient-derived HIV-1 integrase coding regions. Using this vector, we constructed a panel of clinically derived viruses with the canonical patterns of raltegravir resistance mutations and submitted the panel to the NIH AIDS Research and Reference Reagent Program. Investigational integrase inhibitors with activity against these clones are likely to retain activity against the most clinically relevant raltegravir-resistant variants.


Assuntos
Farmacorresistência Viral/genética , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Pirrolidinonas/farmacologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Dados de Sequência Molecular , Mutação , Raltegravir Potássico
20.
Antimicrob Agents Chemother ; 53(5): 2196-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19223644

RESUMO

Q145M, a mutation in a conserved human immunodeficiency virus type 1 reverse transcriptase (RT) region, was reported to decrease susceptibility to multiple RT inhibitors. We report that Q145M and other Q145 mutations do not emerge with RT inhibitors nor decrease RT inhibitor susceptibility. Q145M should not, therefore, be considered an RT inhibitor resistance mutation.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , Mutação , Nucleosídeos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Sequência de Aminoácidos , Farmacorresistência Viral/genética , Genótipo , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA