RESUMO
Blackleg (also known as Phoma or stem canker) is a major, worldwide disease of Brassica crop species, notably B. napus (rapeseed, canola), caused by the ascomycete fungus Leptosphaeria maculans. The outbreak and severity of this disease depend on environmental conditions and management practices, as well as a complex interaction between the pathogen and its hosts. Genetic resistance is a major method to control the disease (and the only control method in some parts of the world, such as continental Europe), but efficient use of genetic resistance is faced with many difficulties: (i) the scarcity of germplasm/genetic resources available, (ii) the different history of use of resistance genes in different parts of the world and the different populations of the fungus the resistance genes are exposed to, (iii) the complexity of the interactions between the plant and the pathogen that expand beyond typical gene-for-gene interactions, (iv) the incredible evolutionary potential of the pathogen and the importance of knowing the molecular processes set up by the fungus to "breakdown' resistances, so that we may design high-throughput diagnostic tools for population surveys, and (v) the different strategies and options to build up the best resistances and to manage them so that they are durable. In this paper, we aim to provide a comprehensive overview of these different points, stressing the differences between the different continents and the current prospects to generate new and durable resistances to blackleg disease.
Assuntos
Resistência à Doença , Leptosphaeria , Melhoramento Vegetal , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Leptosphaeria/genética , Brassica napus/genética , Brassica napus/microbiologia , Genes de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Brassica/genética , Brassica/microbiologiaRESUMO
Interspecific hybridization is widespread in nature and can result in the formation of new hybrid species as well as the transfer of traits between species. However, the fate of newly formed hybrid lineages is relatively understudied. We undertook pairwise crossing between multiple genotypes of three Brassica allotetraploid species Brassica juncea (2n = AABB), Brassica carinata (2n = BBCC), and Brassica napus (2n = AACC) to generate AABC, BBAC, and CCAB interspecific hybrids and investigated chromosome inheritance and fertility in these hybrids and their self-pollinated progeny. Surprisingly, despite the presence of a complete diploid genome in all hybrids, hybrid fertility was very low. AABC and BBAC first generation (F1) hybrids both averaged ~16% pollen viability compared to 3.5% in CCAB hybrids: most CCAB hybrid flowers were male-sterile. AABC and CCAB F1 hybrid plants averaged 5.5 and 0.5 seeds per plant, respectively, and BBAC F1 hybrids ~56 seeds/plant. In the second generation (S1), all confirmed self-pollinated progeny resulting from CCAB hybrids were sterile, producing no self-pollinated seeds. Three AABC S1 hybrids putatively resulting from unreduced gametes produced 3, 14, and 182 seeds each, while other AABC S1 hybrids averaged 1.5 seeds/plant (0-8). BBAC S1 hybrids averaged 44 seeds/plant (range 0-403). We also observed strong bias towards retention rather than loss of the haploid genomes, suggesting that the subgenomes in the Brassica allotetraploids are already highly interdependent, such that loss of one subgenome is detrimental to fertility and viability. Our results suggest that relationships between subgenomes determine hybridization outcomes in these species.
Assuntos
Brassica napus , Brassica , Brassica/genética , Fertilidade/genética , Diploide , CromossomosRESUMO
Many flowering plant taxa contain allopolyploids that share one or more genomes in common. In the Brassica genus, crop species Brassica juncea and Brassica carinata share the B genome, with 2n = AABB and 2n = BBCC genome complements, respectively. Hybridization results in 2n = BBAC hybrids, but the fate of these hybrids over generations of self-pollination has never been reported. We produced and characterized B. juncea × B. carinata (2n = BBAC) interspecific hybrids over six generations of self-pollination under selection for high fertility using a combination of genotyping, fertility phenotyping, and cytogenetics techniques. Meiotic pairing behaviour improved from 68% bivalents in the F1 to 98% in the S5 /S6 generations, and initially low hybrid fertility also increased to parent species levels. The S5 /S6 hybrids contained an intact B genome (16 chromosomes) plus a new, stable A/C genome (18-20 chromosomes) resulting from recombination and restructuring of A and C-genome chromosomes. Our results provide the first experimental evidence that two genomes can come together to form a new, restructured genome in hybridization events between two allotetraploid species that share a common genome. This mechanism should be considered in interpreting phylogenies in taxa with multiple allopolyploid species.
Assuntos
Mostardeira , Poliploidia , Cromossomos de Plantas/genética , Fertilidade/genética , Genoma de Planta/genética , Hibridização Genética , Mostardeira/genéticaRESUMO
Germplasm collections provide an extremely valuable resource for breeders and researchers. However, misclassification of accessions by species often hinders the effective use of these collections. We propose that use of high-throughput genotyping tools can provide a fast, efficient and cost-effective way of confirming species in germplasm collections, as well as providing valuable genetic diversity data. We genotyped 180 Brassicaceae samples sourced from the Australian Grains Genebank across the recently released Illumina Infinium Brassica 60K SNP array. Of these, 76 were provided on the basis of suspected misclassification and another 104 were sourced independently from the germplasm collection. Presence of the A- and C-genomes combined with principle components analysis clearly separated Brassica rapa, B. oleracea, B. napus, B. carinata and B. juncea samples into distinct species groups. Several lines were further validated using chromosome counts. Overall, 18% of samples (32/180) were misclassified on the basis of species. Within these 180 samples, 23/76 (30%) supplied on the basis of suspected misclassification were misclassified, and 9/105 (9%) of the samples randomly sourced from the Australian Grains Genebank were misclassified. Surprisingly, several individuals were also found to be the product of interspecific hybridization events. The SNP (single nucleotide polymorphism) array proved effective at confirming species, and provided useful information related to genetic diversity. As similar genomic resources become available for different crops, high-throughput molecular genotyping will offer an efficient and cost-effective method to screen germplasm collections worldwide, facilitating more effective use of these valuable resources by breeders and researchers.