RESUMO
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-ß, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Assuntos
Linfócitos B Reguladores , Interleucina-10 , Humanos , Camundongos , Animais , Interleucina-10/metabolismo , Prognóstico , Citocinas/metabolismo , Inflamação/metabolismo , Imunossupressores/uso terapêuticoRESUMO
Introduction: The infusion of ex-vivo-generated regulatory B cells may represent a promising novel therapeutic approach for a variety of autoimmune and hyperinflammatory conditions including graft-versus-host disease. Methods: Previously, we developed a protocol for the generation of a novel population of regulatory B cells, which are characterized by secretion of enzymatically active granzyme B (GraB cells). This protocol uses recombinant interleukin 21 (IL-21) and goat-derived F(ab)'2 fragments against the human B cell receptor (anti-BCR). Generally, the use of xenogeneic material for the manufacturing of advanced therapy medicinal products should be avoided to prevent adverse immune reactions as well as potential transmission of so far unknown diseases. Results: In the present work we demonstrated that phorbol-12-myristate-13-acetate (PMA/TPA), a phorbol ester with a particular analogy to the second messenger diacylglycerol (DAG), is a potent enhancer of IL-21-induced differentiation of pre-activated B cells into GraB cells. The percentage of GraB cells after stimulation of pre-activated B cells with IL-21 and PMA/TPA was not significantly lower compared to stimulation with IL-21 and anti-BCR. Discussion: Given that PMA/TPA has already undergone encouraging clinical testing in patients with certain haematological diseases, our results suggest that PMA/TPA may be a safe and feasible alternative for ex-vivo manufacturing of GraB cells.