Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Revista
Intervalo de ano de publicação
1.
Nature ; 543(7647): 687-689, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358083

RESUMO

Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

2.
Nature ; 475(7357): 481-3, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21796207

RESUMO

It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

3.
Nature ; 416(6882): 711-3, 2002 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-11961547

RESUMO

The recent discovery of a binary asteroid during a spacecraft fly-by generated keen interest, because the orbital parameters of binaries can provide measures of the masses, and mutual eclipses could allow us to determine individual sizes and bulk densities. Several binary near-Earth, main-belt and Trojan asteroids have subsequently been discovered. The Kuiper belt-the region of space extending from Neptune (at 30 astronomical units) to well over 100 AU and believed to be the source of new short-period comets-has become a fascinating new window onto the formation of our Solar System since the first member object, not counting Pluto, was discovered in 1992 (ref. 13). Here we report that the Kuiper-belt object 1998 WW31 is binary with a highly eccentric orbit (eccentricity e approximately 0.8) and a long period (about 570 days), very different from the Pluto/Charon system, which was hitherto the only previously known binary in the Kuiper belt. Assuming a density in the range of 1 to 2 g cm-3, the albedo of the binary components is between 0.05 and 0.08, close to the value of 0.04 generally assumed for Kuiper-belt objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA