Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 241(1): 131-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37525059

RESUMO

Many plant species are predicted to migrate poleward in response to climate change. Species distribution models (SDMs) have been widely used to quantify future suitable habitats, but they often neglect soil properties, despite the importance of soil for plant fitness. As soil properties often change along latitudinal gradients, higher-latitude soils might be more or less suitable than average conditions within the current ranges of species, thereby accelerating or slowing potential poleward migration. In this study, we built three SDMs - one with only climate predictors, one with only soil predictors, and one with both - for each of 1870 plant species in Eastern North America, in order to investigate the relative importance of soil properties in determining plant distributions and poleward shifts under climate change. While climate variables were the most important predictors, soil properties also had a substantial influence on continental-scale plant distributions. Under future climate scenarios, models including soil predicted much smaller northward shifts in distributions than climate-only models (c. 40% reduction). Our findings strongly suggest that high-latitude soils are likely to impede ongoing plant migration, and they highlight the necessity of incorporating soil properties into models and predictions for plant distributions and migration under environmental change.


Assuntos
Mudança Climática , Solo , Ecossistema , Plantas , Dispersão Vegetal
2.
Nature ; 562(7725): 57-62, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258229

RESUMO

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.


Assuntos
Aquecimento Global , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Tundra , Biometria , Mapeamento Geográfico , Umidade , Fenótipo , Solo/química , Análise Espaço-Temporal , Temperatura , Água/análise
3.
New Phytol ; 238(2): 549-566, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746189

RESUMO

Plant ecologists use functional traits to describe how plants respond to and influence their environment. Reflectance spectroscopy can provide rapid, non-destructive estimates of leaf traits, but it remains unclear whether general trait-spectra models can yield accurate estimates across functional groups and ecosystems. We measured leaf spectra and 22 structural and chemical traits for nearly 2000 samples from 103 species. These samples span a large share of known trait variation and represent several functional groups and ecosystems, mainly in eastern Canada. We used partial least-squares regression (PLSR) to build empirical models for estimating traits from spectra. Within the dataset, our PLSR models predicted traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) with high accuracy (R2 > 0.85; %RMSE < 10). Models for most chemical traits, including pigments, carbon fractions, and major nutrients, showed intermediate accuracy (R2  = 0.55-0.85; %RMSE = 12.7-19.1). Micronutrients such as Cu and Fe showed the poorest accuracy. In validation on external datasets, models for traits such as LMA and LDMC performed relatively well, while carbon fractions showed steep declines in accuracy. We provide models that produce fast, reliable estimates of several functional traits from leaf spectra. Our results reinforce the potential uses of spectroscopy in monitoring plant function around the world.


Assuntos
Ecossistema , Plantas , Análise Espectral/métodos , Folhas de Planta/química , Carbono/análise
4.
New Phytol ; 238(6): 2651-2667, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960543

RESUMO

Leaf spectra are integrated foliar phenotypes that capture a range of traits and can provide insight into ecological processes. Leaf traits, and therefore leaf spectra, may reflect belowground processes such as mycorrhizal associations. However, evidence for the relationship between leaf traits and mycorrhizal association is mixed, and few studies account for shared evolutionary history. We conduct partial least squares discriminant analysis to assess the ability of spectra to predict mycorrhizal type. We model the evolution of leaf spectra for 92 vascular plant species and use phylogenetic comparative methods to assess differences in spectral properties between arbuscular mycorrhizal and ectomycorrhizal plant species. Partial least squares discriminant analysis classified spectra by mycorrhizal type with 90% (arbuscular) and 85% (ectomycorrhizal) accuracy. Univariate models of principal components identified multiple spectral optima corresponding with mycorrhizal type due to the close relationship between mycorrhizal type and phylogeny. Importantly, we found that spectra of arbuscular mycorrhizal and ectomycorrhizal species do not statistically differ from each other after accounting for phylogeny. While mycorrhizal type can be predicted from spectra, enabling the use of spectra to identify belowground traits using remote sensing, this is due to evolutionary history and not because of fundamental differences in leaf spectra due to mycorrhizal type.


Assuntos
Micorrizas , Traqueófitas , Filogenia , Nitrogênio , Plantas
5.
Glob Chang Biol ; 29(13): 3525-3538, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36916852

RESUMO

Compositional change is a ubiquitous response of ecological communities to environmental drivers of global change, but is often regarded as evidence of declining "biotic integrity" relative to historical baselines. Adaptive compositional change, however, is a foundational idea in evolutionary biology, whereby changes in gene frequencies within species boost population-level fitness, allowing populations to persist as the environment changes. Here, we present an analogous idea for ecological communities based on core concepts of fitness and selection. Changes in community composition (i.e., frequencies of genetic differences among species) in response to environmental change should normally increase the average fitnessof community members. We refer to compositional changes that improve the functional match, or "fit," between organisms' traits and their environment as adaptive community dynamics. Environmental change (e.g., land-use change) commonly reduces the fit between antecedent communities and new environments. Subsequent change in community composition in response to environmental changes, however, should normally increase community-level fit, as the success of at least some constituent species increases. We argue that adaptive community dynamics are likely to improve or maintain ecosystem function (e.g., by maintaining productivity). Adaptive community responses may simultaneously produce some changes that are considered societally desirable (e.g., increased carbon storage) and others that are undesirable (e.g., declines of certain species), just as evolutionary responses within species may be deemed desirable (e.g., evolutionary rescue of an endangered species) or undesirable (e.g., enhanced virulence of an agricultural pest). When assessing possible management interventions, it is important to distinguish between drivers of environmental change (e.g., undesired climate warming) and adaptive community responses, which may generate some desirable outcomes. Efforts to facilitate, accept, or resist ecological change require separate consideration of drivers and responses, and may highlight the need to reconsider preferences for historical baseline communities over communities that are better adapted to the new conditions.


Assuntos
Biodiversidade , Ecossistema , Animais , Evolução Biológica , Clima , Espécies em Perigo de Extinção
6.
Oecologia ; 202(1): 55-67, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081239

RESUMO

Based on hypotheses related to environmental filtering vs. stochastic community assembly, we tested taxon-specific predictions regarding the relationships of alpha diversity, beta diversity and species composition of epiphytic macrolichens and bryophytes with elevation and the lateral gradient on trees (the different sides of the tree bole related to aspect and trunk inclination) at Parc national du Mont-Mégantic in Southeastern Québec, Canada. For lichens on firs, increasing elevation was associated with increasing alpha diversity, and a marked shift in community composition, at the scale of whole trees. In contrast, for bryophytes on maples, tree inclination and the lateral gradient had the strongest effects: more inclined trees had greater whole-tree alpha diversity and stronger within-tree contrasts in composition between the upper and lower bole surfaces. For lichens on maples, whole-tree alpha diversity showed a weak, negative relationship with inclination, and beta diversity increased slightly with elevation. Our results are consistent with theories predicting greater alpha diversity in more favorable environments (for lichens: high elevation with high relative air humidity and lower temperatures; for bryophytes: upper surfaces of tree boles with liquid water available), but support was weak for the prediction of greater beta diversity in more favorable environments. Overall, the important predictors of epiphytic cryptogam diversity vary more among the species of tree host (maple vs. fir) than focal taxa (lichens vs. bryophytes), with patterns likely related to different effects of water, temperature, and competition between lichens and bryophytes.


Assuntos
Briófitas , Líquens , Árvores , Canadá
7.
Ecol Lett ; 25(2): 466-482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866301

RESUMO

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Florestas , Plantas
8.
Glob Chang Biol ; 28(20): 5945-5955, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35808866

RESUMO

Land-use change is widely regarded as a simplifying and homogenising force in nature. In contrast, analysing global land-use reconstructions from the 10th to 20th centuries, we found progressive increases in the number, evenness, and diversity of ecosystems (including human-modified land-use types) present across most of the Earth's land surface. Ecosystem diversity increased more rapidly after ~1700 CE, then slowed or slightly declined (depending on the metric) following the mid-20th century acceleration of human impacts. The results also reveal increasing spatial differentiation, rather than homogenisation, in both the presence-absence and area-coverage of different ecosystem types at sub-global scales-at least, prior to the mid-20th century. Nonetheless, geographic homogenization was revealed for a subset of analyses at a global scale, reflecting the now-global presence of certain human-modified ecosystem types. Our results suggest that, while human land-use changes have caused declines in relatively undisturbed or "primary" ecosystem types, they have also driven increases in ecosystem diversity over the last millennium.


Assuntos
Biodiversidade , Ecossistema , Humanos
9.
Glob Chang Biol ; 27(10): 2102-2112, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33459442

RESUMO

Differences between the distributions of tree saplings and adults in geographic or niche space have been used to infer climate change effects on tree range dynamics. Previous studies have reported narrower latitudinal or climatic niche ranges of juvenile trees compared to adults, concluding that tree ranges are contracting, contradicting climate-based predictions. However, more comprehensive sampling of adult trees than juvenile trees in most regional forest inventories could potentially bias ontogenetic comparisons. Here we first report spatial simulations showing that reduced sampling intensity can result in underestimates of range and niche limits, but that resampling the same number of individuals of different life stages can eliminate this bias. We then reanalyzed the U.S. Forest Inventory and Analysis data, comparing the range and niche limits between adult trees and saplings of 92 tree species, both using the original data and two resampling procedures. Resampling aimed to reduce sampling biases by controlling for either sampling area or the number of individuals sampled. Overall, these resampling procedures had a major influence on the estimation of range limits, most often by reducing, eliminating, or even reversing the tendency in the original analyses for saplings to have broader distributions than adult trees. These results indicate that previous conclusions that the distributions of juvenile trees were contracting in response to climate change were potentially artifacts of sampling in the underlying data. More generally, sampling effects involved in the estimation of geographic ranges and environmental niche widths need to be taken into account in studies comparing different life stages, and also likely in other types of distribution comparisons.


Assuntos
Florestas , Árvores , Mudança Climática , Humanos , Viés de Seleção
10.
Am J Bot ; 108(3): 538-545, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33733494

RESUMO

PREMISE: One of the best-documented ecological responses to climate warming involves temporal shifts of phenological events. However, we lack an understanding of how phenological responses to climate change vary among populations of the same species. Such variability has the potential to affect flowering synchrony among populations and hence the potential for gene flow. METHODS: To test whether an earlier start of the growing season affects the potential for gene flow among populations, we quantified the distributions of flowering times of two spring-flowering plants (Trillium erectum and Erythronium americanum) over 6 years along an elevational gradient. We developed a novel model-based metric of potential gene flow between pairs of populations to quantify the potential for pollen-mediated gene flow based on flowering phenology. RESULTS: Earlier onset of spring led to greater separation of peak flowering dates across the elevational gradient for both species investigated, but was only associated with a reduction in potential gene flow in T. erectum, not E. americanum. CONCLUSIONS: Our study suggests that climate change could decrease gene flow via phenological separation among populations along climatic gradients. We also provide a novel method for quantifying potential pollen-mediated gene flow using data on flowering phenology, based on a quantitative, more biologically interpretable model than other available metrics.


Assuntos
Fluxo Gênico , Magnoliopsida , Mudança Climática , Flores , Estações do Ano , Temperatura
11.
Am Nat ; 194(4): 495-515, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31490718

RESUMO

Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.


Assuntos
Adaptação Biológica , Evolução Biológica , Fenômenos Ecológicos e Ambientais , Aptidão Genética , Seleção Genética
12.
Glob Chang Biol ; 25(5): 1629-1641, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636090

RESUMO

Many studies of individual sites have revealed biotic changes consistent with climate warming (e.g., upward elevational distribution shifts), but our understanding of the tremendous variation among studies in the magnitude of such biotic changes is minimal. In this study, we resurveyed forest vegetation plots 40 years after the initial surveys in three protected areas along a west-to-east gradient of increasingly steep recent warming trends in eastern Canada (Québec). Consistent with the hypothesis that climate warming has been an important driver of vegetation change, we found an increasing magnitude of changes in species richness and composition from west to east among the three parks. For the two mountainous parks, we found no significant changes in elevational species' distributions in the easternmost park (raw mean = +11.4 m at Forillon Park) where warming has been minimal, and significant upward distribution shifts in the centrally located park (+38.9 m at Mont-Mégantic), where the recent warming trend has been marked. Community Temperature Indices (CTI), reflecting the average affinities of locally co-occurring species to temperature conditions across their geographic ranges ("Species Temperature Indices"), did not change over time as predicted. However, close examination of the underpinnings of CTI values suggested a high sensitivity to uncertainty in individual species' temperature indices, and so a potentially limited responsiveness to warming. Overall, by testing a priori predictions concerning variation among parks in the direction and magnitude of vegetation changes, we have provided stronger evidence for a link between climate warming and biotic responses than otherwise possible and provided a potential explanation for large variation among studies in warming-related biotic changes.


Assuntos
Biota , Mudança Climática , Plantas , Biodiversidade , Clima , Monitoramento Ambiental , Florestas , Plantas/classificação , Quebeque , Especificidade da Espécie , Temperatura
13.
Glob Chang Biol ; 24(4): 1722-1740, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29271579

RESUMO

The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.


Assuntos
Biodiversidade , Plantas/classificação , Clima , Europa (Continente) , Florestas , Atividades Humanas , Nitrogênio
14.
Mol Ecol ; 26(21): 6085-6099, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28881498

RESUMO

Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels.


Assuntos
Biodiversidade , Clima , Insetos/classificação , Rios , Animais , Europa (Continente) , Geografia , Haplótipos , Filogenia , Especificidade da Espécie
15.
Ecology ; 98(2): 583-590, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864922

RESUMO

We present new data and analyses revealing fundamental flaws in a critique of two recent meta-analyses of local-scale temporal biodiversity change. First, the conclusion that short-term time series lead to biased estimates of long-term change was based on two errors in the simulations used to support it. Second, the conclusion of negative relationships between temporal biodiversity change and study duration was entirely dependent on unrealistic model assumptions, the use of a subset of data, and inclusion of one outlier data point in one study. Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is not robust to alternative analyses on the original data set, and is absent in a larger, updated data set. Finally, the undebatable point, noted in both original papers, that studies in the ecological literature are geographically biased, was used to cast doubt on the conclusion that, outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is centered approximately on zero. Future studies may modify conclusions, but at present, alternative conclusions based on the geographic-bias argument rely on speculation. In sum, the critique raises points of uncertainty typical of all ecological studies, but does not provide an evidence-based alternative interpretation.


Assuntos
Biodiversidade , Ecologia , Incerteza
16.
Glob Chang Biol ; 23(4): 1540-1551, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27391174

RESUMO

Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate - for example photoperiod, biotic interactions, or edaphic conditions - might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.


Assuntos
Aclimatação , Plantas , Tundra , Regiões Árticas , Canadá , Ecossistema
17.
Glob Chang Biol ; 23(7): 2660-2671, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28079308

RESUMO

Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms.


Assuntos
Mudança Climática , Desenvolvimento Vegetal , Temperatura , Temperatura Baixa , Estações do Ano , Tundra
18.
Glob Chang Biol ; 23(3): 1065-1074, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27590777

RESUMO

Globally, biological invasions can have strong impacts on biodiversity as well as ecosystem functioning. While less conspicuous than introduced aboveground organisms, introduced belowground organisms may have similarly strong effects. Here, we synthesize for the first time the impacts of introduced earthworms on plant diversity and community composition in North American forests. We conducted a meta-analysis using a total of 645 observations to quantify mean effect sizes of associations between introduced earthworm communities and plant diversity, cover of plant functional groups, and cover of native and non-native plants. We found that plant diversity significantly declined with increasing richness of introduced earthworm ecological groups. While plant species richness or evenness did not change with earthworm invasion, our results indicate clear changes in plant community composition: cover of graminoids and non-native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease, with increasing earthworm biomass. Overall, these findings support the hypothesis that introduced earthworms facilitate particular plant species adapted to the abiotic conditions of earthworm-invaded forests. Further, our study provides evidence that introduced earthworms are associated with declines in plant diversity in North American forests. Changing plant functional composition in these forests may have long-lasting effects on ecosystem functioning.


Assuntos
Biodiversidade , Florestas , Espécies Introduzidas , Oligoquetos , Plantas , Animais , Ecossistema , Estados Unidos
19.
Ecology ; 97(11): 3058-3069, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27870043

RESUMO

The enemy release hypothesis is frequently invoked to explain invasion by nonnative species, but studies focusing on the influence of enemies on natural plant range expansion due to climate change remain scarce. We combined multiple approaches to study the influence of plant-enemy interactions on the upper elevational range limit of sugar maple (Acer saccharum) in southeastern Québec, Canada, where a previous study had demonstrated intense seed predation just beyond the range limit. Consistent with the hypothesis of release from natural enemies at the range limit, data from both natural patterns of regeneration and from seed and seedling transplant experiments showed higher seedling densities at the range edge than in the core of the species' distribution. A growth chamber experiment manipulating soil origin and temperature indicated that this so-called "happy edge" was not likely caused by temperature (i.e., the possibility that climate warming has made high elevation temperatures optimal for sugar maple) or by abiotic soil factors that vary along the elevational gradient. Finally, an insect-herbivore-exclusion experiment showed that insect herbivory was a major cause of seedling mortality in the core of sugar maple's distribution, whereas seedlings transplanted at or beyond the range edge experienced minimal herbivory (i.e., enemy release). Insect herbivory did not completely explain the high levels of seedling mortality in the core of the species' distribution, suggesting that seedlings at or beyond the range edge may also experience release from pathogens. In sum, while some effects of enemies are magnified beyond range edges (e.g., seed predation), others are dampened at and beyond the range edge (e.g., insect herbivory), such that understanding the net outcome of different biotic interactions within, at and beyond the edge of distribution is critical to predicting species' responses to global change.


Assuntos
Acer/fisiologia , Plântula/crescimento & desenvolvimento , Altitude , Mudança Climática , Espécies Introduzidas , Dinâmica Populacional , Fatores de Tempo
20.
Bioscience ; 67(1): 73-83, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30220729

RESUMO

More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of, and interactions among, multiple drivers joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this paper we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver-orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid implementation of multi-region resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA