Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microb Cell Fact ; 20(1): 184, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556155

RESUMO

BACKGROUND: Microorganisms can be metabolically engineered to produce a wide range of commercially important chemicals. Advancements in computational strategies for strain design and synthetic biological techniques to construct the designed strains have facilitated the generation of large libraries of potential candidates for chemical production. Consequently, there is a need for high-throughput laboratory scale techniques to characterize and screen these candidates to select strains for further investigation in large scale fermentation processes. Several small-scale fermentation techniques, in conjunction with laboratory automation have enhanced the throughput of enzyme and strain phenotyping experiments. However, such high throughput experimentation typically entails large operational costs and generate massive amounts of laboratory plastic waste. RESULTS: In this work, we develop an eco-friendly automation workflow that effectively calibrates and decontaminates fixed-tip liquid handling systems to reduce tip waste. We also investigate inexpensive methods to establish anaerobic conditions in microplates for high-throughput anaerobic phenotyping. To validate our phenotyping platform, we perform two case studies-an anaerobic enzyme screen, and a microbial phenotypic screen. We used our automation platform to investigate conditions under which several strains of E. coli exhibit the same phenotypes in 0.5 L bioreactors and in our scaled-down fermentation platform. We also propose the use of dimensionality reduction through t-distributed stochastic neighbours embedding (t-SNE) in conjunction with our phenotyping platform to effectively cluster similarly performing strains at the bioreactor scale. CONCLUSIONS: Fixed-tip liquid handling systems can significantly reduce the amount of plastic waste generated in biological laboratories and our decontamination and calibration protocols could facilitate the widespread adoption of such systems. Further, the use of t-SNE in conjunction with our automation platform could serve as an effective scale-down model for bioreactor fermentations. Finally, by integrating an in-house data-analysis pipeline, we were able to accelerate the 'test' phase of the design-build-test-learn cycle of metabolic engineering.


Assuntos
Automação Laboratorial/métodos , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica/instrumentação , Engenharia Metabólica/métodos , Anaerobiose , Escherichia coli/genética , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos
2.
Metab Eng ; 62: 186-197, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827703

RESUMO

Microbial metabolism can be harnessed to produce a broad range of industrially important chemicals. Often, three key process variables: Titer, Rate and Yield (TRY) are the target of metabolic engineering efforts to improve microbial hosts toward industrial production. Previous research into improving the TRY metrics have examined the efficacy of having distinct growth and production stages to achieve enhanced productivity. However, these studies assumed a switch from a maximum growth to a maximum production phenotype. Hence, phenotypes with intermediate growth and chemical production in each of the growth and production stages of two-stage processes are yet to be explored. The impact of reduced growth rates on substrate uptake adds to the need for intelligent choice of operating points while designing two-stage processes. In this work, we develop a computational framework that scans the phenotypic space of microbial metabolism to identify ideal growth and production phenotypic targets, to achieve optimal TRY targets. Using this framework, with Escherichia coli as a model organism, we compare two-stage processes that use dynamic pathway regulation, with one-stage processes that use static intervention strategies, for different bioprocess objectives. Our results indicate that two-stage processes with intermediate growth during the production stage always result in optimal TRY values even in cases where substrate uptake is limited due to reduced growth during chemical production. By analyzing the flux distributions for the production enhancing strategies, we identify key reactions and reaction subsystems that require perturbation to achieve a production phenotype for a wide range of metabolites in E. coli. Interestingly, flux perturbations that increase phosphoenolpyruvate and NADPH availability are enriched among these production phenotypes. Furthermore, reactions in the pentose phosphate pathway emerge as key control nodes that function together to increase the availability of precursors to most products in E. coli. The inherently modular nature of microbial metabolism results in common reactions and reaction subsystems that need to be regulated to modify microbes from their target of growth to the production of a diverse range of metabolites. Due to the presence of these common patterns in the flux perturbations, we propose the possibility of a universal production strain.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , NADP/metabolismo , Via de Pentose Fosfato
3.
Metab Eng Commun ; 9: e00089, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31011536

RESUMO

Microorganisms can be genetically engineered to solve a range of challenges in diverse including health, environmental protection and sustainability. The natural complexity of biological systems makes this an iterative cycle, perturbing metabolism and making stepwise progress toward a desired phenotype through four major stages: design, build, test, and data interpretation. This cycle has been accelerated by advances in molecular biology (e.g. robust DNA synthesis and assembly techniques), liquid handling automation and scale-down characterization platforms, generating large heterogeneous data sets. Here, we present an extensible Python package for scientists and engineers working with large biological data sets to interpret, model, and visualize data: the IMPACT (Integrated Microbial Physiology: Analysis, Characterization and Translation) framework. Impact aims to ease the development of Python-based data analysis workflows for a range of stakeholders in the bioengineering process, offering open-source tools for data analysis, physiology characterization and translation to visualization. Using this framework, biologists and engineers can opt for reproducible and extensible programmatic data analysis workflows, mediating a bottleneck limiting the throughput of microbial engineering. The Impact framework is available at https://github.com/lmse/impact.

4.
ISME J ; 13(4): 1042-1055, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30607026

RESUMO

Microbes in ecosystems often develop coordinated metabolic interactions. Therefore, understanding metabolic interdependencies between microbes is critical to deciphering ecosystem function. In this study, we sought to deconstruct metabolic interdependencies in organohalide-respiring consortium ACT-3 containing Dehalobacter restrictus using a combination of metabolic modeling and experimental validation. D. restrictus possesses a complete set of genes for amino acid biosynthesis yet when grown in isolation requires amino acid supplementation. We reconciled this discrepancy using flux balance analysis considering cofactor availability, enzyme promiscuity, and shared protein expression patterns for several D. restrictus strains. Experimentally, 13C incorporation assays, growth assays, and metabolite analysis of D. restrictus strain PER-K23 cultures were performed to validate the model predictions. The model resolved that the amino acid dependency of D. restrictus resulted from restricted NADPH regeneration and predicted that malate supplementation would replenish intracellular NADPH. Interestingly, we observed unexpected export of pyruvate and glutamate in parallel to malate consumption in strain PER-K23 cultures. Further experimental analysis using the ACT-3 transfer cultures suggested the occurrence of an interspecies malate-pyruvate shuttle reconciling a redox imbalance, reminiscent of the mitochondrial malate shunt pathway in eukaryotic cells. Altogether, this study suggests that redox imbalance and metabolic complementarity are important driving forces for metabolite exchange in anaerobic microbial communities.


Assuntos
Malatos/metabolismo , Consórcios Microbianos , Peptococcaceae/metabolismo , Ácido Pirúvico/metabolismo , NADP/metabolismo , Oxirredução
5.
Nat Commun ; 9(1): 5332, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552335

RESUMO

Metabolism is highly regulated, allowing for robust and complex behavior. This behavior can often be achieved by controlling a small number of important metabolic reactions, or metabolic valves. Here, we present a method to identify the location of such valves: the metabolic valve enumerator (MoVE). MoVE uses a metabolic model to identify genetic intervention strategies which decouple two desired phenotypes. We apply this method to identify valves which can decouple growth and production to systematically improve the rate and yield of biochemical production processes. We apply this algorithm to the production of diverse compounds and obtained solutions for over 70% of our targets, identifying a small number of highly represented valves to achieve near maximal growth and production. MoVE offers a systematic approach to identify metabolic valves using metabolic models, providing insight into the architecture of metabolic networks and accelerating the widespread implementation of dynamic flux redirection in diverse systems.


Assuntos
Redes e Vias Metabólicas , Fenótipo , Algoritmos , Biologia Computacional/métodos , Técnicas de Inativação de Genes , Engenharia Genética , Redes e Vias Metabólicas/genética , Modelos Biológicos
6.
ACS Synth Biol ; 7(12): 2854-2866, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30376634

RESUMO

Metabolic engineers aim to genetically modify microorganisms to improve their ability to produce valuable compounds. Despite the prevalence of growth-coupled production processes, these strategies can significantly limit production rates. Instead, rates can be improved by decoupling and optimizing growth and production independently, and operating with a growth stage followed by a production stage. Here, we implement a bistable transcriptional controller to decouple and switch between these two states. We optimize the controller in anaerobic conditions, typical of industrial fermentations, to ensure stability and tight expression control, while improving switching dynamics. The stability of this controller can be maintained through a simulated seed train scale-up from 5 mL to 500 000 L, indicating industrial feasibility. Finally, we demonstrate a two-stage production process using our optimal construct to improve the instantaneous rate of lactate production by over 50%, motivating the use of these systems in broad metabolic engineering applications.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Anaerobiose , Técnicas de Cultura Celular por Lotes/métodos , L-Lactato Desidrogenase/genética , Ácido Láctico/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo
7.
Curr Opin Biotechnol ; 34: 142-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25616051

RESUMO

Metabolic engineering has proven crucial for the microbial production of valuable chemicals. Due to the rapid development of tools in synthetic biology, there has been recent interest in the dynamic regulation of flux through metabolic pathways to overcome some of the issues arising from traditional strategies lacking dynamic control. There are many diverse implementations of dynamic control, with a range of metabolite sensors and inducers being used. Furthermore, control has been implemented at the transcriptional, translational and post-translational levels. Each of these levels have unique sets of engineering tools, and allow for control at different dynamic time-scales. In order to extend the applications of dynamic control, new tools are required to improve the dynamics of regulatory circuits. Further study and characterization of circuit robustness is also needed to improve their applicability to industry. The successful implementation of dynamic control, using technologies that are amenable to commercialization, will be a fundamental step in advancing metabolic engineering.


Assuntos
Engenharia Metabólica , Animais , Fermentação , Redes e Vias Metabólicas , Fenótipo , Biologia Sintética/métodos
8.
Integr Biol (Camb) ; 7(8): 930-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079398

RESUMO

Metabolic networks are characterized by multiple redundant reactions that do not have a clear biological function. The redundancies in the metabolic networks are implicated in adaptation to random mutations and survival under different environmental conditions. Reactions that are not active under wild-type growth conditions, but get transiently activated after a mutation event such as gene deletion are known as latent reactions. Characterization of multiple-gene knockout mutants can identify the physiological roles of latent reactions. In this study, we characterized double-gene deletion mutants of E. coli with the aim of investigating the sub-optimal physiology of the mutants and the possible roles of latent reactions. Specifically, we investigated the effects of the deletion of the glyoxylate-shunt gene aceA (encoding a latent reaction enzyme, isocitrate lyase) on the growth characteristics of the mutant E. coli Δpgi. The deletion of aceA reduced the growth rate of E. coli Δpgi, indicating that the activation of the glyoxylate shunt plays an important role in adaptation of the mutant E. coli Δpgi when no other latent reactions are concurrently inactivated. We also investigated the effect of the order of the gene deletions on the growth rates and substrate uptake rates of the double-gene deletion mutants. The results indicate that the order in which genes are deleted determines the phenotype of the mutants during the sub-optimal growth phase. To elucidate the mechanism behind the difference between the observed phenotypes, we carried out transcriptomic analysis and constraint-based modeling of the mutants. Transcriptomic analysis showed differential expression of the gene aceK (encoding the protein isocitrate dehydrogenase kinase) involved in controlling the isocitrate flux through the TCA cycle and the glyoxylate shunt. Higher acetate production in the E. coli ΔaceA1 Δpgi2 mutant was consistent with the increased aceK expression, which limits the TCA cycle flux and causes acetate production via overflow metabolism.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Engenharia Genética/métodos , Isocitrato Liase/genética , Técnicas de Inativação de Genes/métodos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA