RESUMO
Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research.
Assuntos
Proteínas de Ciclo Celular/genética , Diferenciação Celular , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Córtex Cerebral/citologia , Neurônios GABAérgicos/citologia , Hipocampo/metabolismo , Camundongos , Neocórtex , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Telencéfalo/citologia , Telencéfalo/metabolismoRESUMO
The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.
Assuntos
Transtornos do Neurodesenvolvimento/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/genética , Mutação em Linhagem Germinativa , Haploinsuficiência , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Linfócitos/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Mutação , Proteínas Repressoras/metabolismo , Linfócitos T/fisiologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
The development of the dentate gyrus is characterized by distinct phases establishing a durable stem-cell pool required for postnatal and adult neurogenesis. Here, we report that Bcl11b/Ctip2, a zinc finger transcription factor expressed in postmitotic neurons, plays a critical role during postnatal development of the dentate gyrus. Forebrain-specific ablation of Bcl11b uncovers dual phase-specific functions of Bcl11b demonstrated by feedback control of the progenitor cell compartment as well as regulation of granule cell differentiation, leading to impaired spatial learning and memory in mutants. Surprisingly, we identified Desmoplakin as a direct transcriptional target of Bcl11b. Similarly to Bcl11b, postnatal neurogenesis and granule cell differentiation are impaired in Desmoplakin mutants. Re-expression of Desmoplakin in Bcl11b mutants rescues impaired neurogenesis, suggesting Desmoplakin to be an essential downstream effector of Bcl11b in hippocampal development. Together, our data define an important novel regulatory pathway in hippocampal development, by linking transcriptional functions of Bcl11b to Desmoplakin, a molecule known to act on cell adhesion.
Assuntos
Giro Denteado/fisiologia , Neurogênese/fisiologia , Proteínas Repressoras/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Animais Recém-Nascidos , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Desmoplaquinas/fisiologia , Feminino , Deficiências da Aprendizagem/metabolismo , Deficiências da Aprendizagem/fisiopatologia , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Proteínas Repressoras/genética , Células-Tronco/fisiologia , Proteínas Supressoras de Tumor/genéticaRESUMO
The function of the cerebral cortex depends on various types of interneurons (cortical interneurons [cINs]) and their appropriate allocation to the cortical layers. Caudal ganglionic eminence-derived cINs (cGE-cINs) are enriched in superficial layers. Developmental mechanisms directing cGE-cINs toward superficial layers remain poorly understood. We examine how developmental and final positioning of cGE-cINs are influenced by the Cxcl12, Cxcr4, Ackr3 module, the chief attractant system guiding medial ganglionic eminence-derived cINs (mGE-cINs). We find that Cxcl12 attracts cGE-cINs through Cxcr4 and supports their layer-specific positioning in the developing cortex. This requires the prevention of excessive Cxcr4 stimulation by Ackr3-mediated Cxcl12 sequestration. Postnatally, Ackr3 confines Cxcl12 action to the marginal zone. Unlike mGE-cINs, cGE-cINs continue to express Cxcr4 at early postnatal stages, which permits cGE-cINs to become positioned in the forming layer 1. Thus, chemoattraction by Cxcl12 guides cGE-cINs and holds them in superficial cortical layers.
Assuntos
Córtex Cerebral , Interneurônios , Movimento Celular/fisiologia , Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Eminência Mediana , MesodermaRESUMO
Mouse genetics offers a powerful tool determining the role of specific genes during development. Analyzing the resulting phenotypes by immunohistochemical and molecular methods provides information of potential target genes and signaling pathways. To further elucidate specific regulatory mechanisms requires a system allowing the manipulation of only a small number of cells of a specific tissue by either overexpression, ablation or re-introduction of specific genes and follow their fate during development. To achieve this ex utero electroporation of hippocampal structures, especially the dentate gyrus, followed by organotypic slice culture provides such a tool. Using this system to generate mosaic deletions allows determining whether the gene of interest regulates cell-autonomously developmental processes like progenitor cell proliferation or neuronal differentiation. Furthermore it facilitates the rescue of phenotypes by re-introducing the deleted gene or its target genes. In contrast to in utero electroporation the ex utero approach improves the rate of successfully targeting deeper layers of the brain like the dentate gyrus. Overall ex utero electroporation and organotypic slice culture provide a potent tool to study regulatory mechanisms in a semi-native environment mirroring endogenous conditions.