Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 249(3): 343-355, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257576

RESUMO

The identification of novel regulators of tumor progression is a key challenge to gain knowledge on the biology of small intestinal neuroendocrine tumors (SI-NETs). We recently identified the loss of the axon guidance protein semaphorin 3F as a protumoral event in SI-NETs. Interestingly the expression of its receptor neuropilin-2 (NRP-2) was still maintained. This study aimed at deciphering the potential role of NRP-2 as a contributor to SI-NET progression. The role of NRP-2 in SI-NET progression was addressed using an approach integrating human tissue and serum samples, cell lines and in vivo models. Data obtained from human SI-NET tissues showed that membranous NRP-2 expression is present in a majority of tumors, and is correlated with invasion, metastatic abilities, and neovascularization. In addition, NRP-2 soluble isoform was found elevated in serum samples from metastatic patients. In preclinical mouse models of NET progression, NRP-2 silencing led to a sustained antitumor effect, partly driven by the downregulation of VEGFR2. In contrast, its ectopic expression conferred a gain of aggressiveness, driven by the activation of various oncogenic signaling pathways. Lastly, NRP-2 inhibition led to a decrease of tumor cell viability, and sensitized to therapeutic agents. Overall, our results point out NRP-2 as a potential therapeutic target for SI-NETs, and will foster the development of innovative strategies targeting this receptor. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Neuroendócrino/metabolismo , Neoplasias Intestinais/metabolismo , Intestino Delgado/metabolismo , Neuropilina-2/metabolismo , Idoso , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/secundário , Linhagem Celular Tumoral , Movimento Celular , Everolimo/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Masculino , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica , Neuropilina-2/sangue , Neuropilina-2/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
J Cell Sci ; 127(Pt 3): 599-608, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24357723

RESUMO

Sharp-1 is a basic helix-loop-helix (bHLH) transcriptional repressor that is involved in a number of cellular processes. Our previous studies have demonstrated that Sharp-1 is a negative regulator of skeletal myogenesis and it blocks differentiation of muscle precursor cells by modulating the activity of MyoD. In order to understand its role in pre- and post-natal myogenesis, we assessed skeletal muscle development and freeze-injury-induced regeneration in Sharp-1-deficient mice. We show that embryonic skeletal muscle development is not impaired in the absence of Sharp-1; however, post-natally, the regenerative capacity is compromised. Although the initial phases of injury-induced regeneration proceed normally in Sharp-1(-/-) mice, during late stages, the mutant muscle exhibits necrotic fibers, calcium deposits and fibrosis. TGF-ß expression, as well as levels of phosphorylated Smad2 and Smad3, are sustained in the mutant tissue and treatment with decorin, which blocks TGF-ß signaling, improves the histopathology of Sharp-1(-/-) injured muscles. In vitro, Sharp-1 associates with Smad3, and its overexpression inhibits TGF-ß- and Smad3-mediated expression of extracellular matrix genes in myofibroblasts. These results demonstrate that Sharp-1 regulates muscle regenerative capacity, at least in part, by modulation of TGF-ß signaling.


Assuntos
Músculo Esquelético/metabolismo , Regeneração/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Miofibroblastos/metabolismo , Transdução de Sinais , Proteína Smad3 , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta/biossíntese
3.
Invest New Drugs ; 34(5): 654-62, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27230034

RESUMO

Objectives Several targeted therapies are available for metastatic neuroendocrine tumours (NETs) but no predictive factor of response to these treatments has been identified yet. Our aim was to identify and evaluate clinical, biological, histological and functional markers of response to everolimus. Methods We retrospectively reviewed 53 patients with NETs treated with everolimus (68 % in clinical trials). Clinical, biological and histological data were analyzed. The functional marker p-p70S6K, a main effector of the mTOR pathway, was studied by immunohistochemistry in 43 cases. Prognostic factors of progression-free survival (PFS) were studied by Kaplan Meier analysis. Results All patients had metastatic and progressive disease before everolimus treatment. Objective response was 9 % and median PFS was 8.1 (4.7-11.5) months. Hypercholesterolemia (HR = 0.13, p < 0.0001) was associated with longer PFS, whereas presence of bone metastases (HR = 3.1, p < 0.001) and overexpression of p-p70S6K by tumor cells (HR = 2.5, p = 0.01) were associated with shorter PFS under everolimus at multivariate analysis. Conclusion Clinical markers are not useful to predict response to everolimus. However, occurrence of hypercholesterolemia under treatment may be an early marker of response. Prospective studies are required to confirm these results and to assess whether p-p70S6K immunostaining is a prognostic or predictive marker of no-response to everolimus.


Assuntos
Antineoplásicos/uso terapêutico , Everolimo/uso terapêutico , Hipercolesterolemia/induzido quimicamente , Tumores Neuroendócrinos/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Everolimo/efeitos adversos , Everolimo/farmacologia , Feminino , Humanos , Hipercolesterolemia/metabolismo , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/metabolismo , Prognóstico , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento
4.
Cancer ; 121(19): 3428-34, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26058464

RESUMO

BACKGROUND: The alkylating agents (ALKYs) streptozotocin, dacarbazine, and temozolomide currently are the main drugs used in systemic chemotherapy for neuroendocrine tumors (NETs). The promising activity shown by gemcitabine and oxaliplatin (GEMOX) in previous studies prompted this study 1) to confirm the use of GEMOX in a larger population of NET patients, 2) to compare its efficacy with that of ALKYs, and 3) to explore whether the O(6) -methylguanine-DNA methyltransferase (MGMT) status could help in selecting the chemotherapy regimen. METHODS: One hundred four patients with metastatic NETs (37 pancreatic NETs, 33 gastrointestinal NETs, 23 bronchial NETs, and 11 NETs of other/unknown origin) were treated with GEMOX between 2004 and 2014. Among these patients, 63 also received ALKYs. MGMT promoter gene methylation was assessed via pyrosequencing in 42 patients. RESULTS: Patients received a median of 6 courses of GEMOX. Twenty-four (23%) had an objective response (OR). The median progression-free survival (PFS) and overall survival were 7.8 and 31.6 months, respectively. In the 63 patients treated with both ALKYs and GEMOX, the ORs (22% and 22%) and the PFSs (7.5 and 7.3 months) were similar. The response was concordant in 53% of the patients. Promoter gene methylation of MGMT was associated with better outcomes with ALKYs (P = .03 for OR and P = .04 for PFS) but not GEMOX. CONCLUSIONS: GEMOX is effective against NETs; its activity is comparable to that of ALKYs, and it is not influenced by the MGMT status. Our data suggest that GEMOX might be preferred for patients with unmethylated MGMT tumors. Cancer 2015;121:3435-43. © 2015 American Cancer Society.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Tumores Neuroendócrinos/tratamento farmacológico , Compostos Organoplatínicos/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Alquilantes , Antimetabólitos Antineoplásicos/administração & dosagem , Antineoplásicos Alquilantes/uso terapêutico , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Estudos Retrospectivos , Resultado do Tratamento , Gencitabina
5.
J Cell Biol ; 177(4): 647-57, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17502421

RESUMO

Satellite cells play a critical role in skeletal muscle regeneration in response to injury. Notch signaling is vital for satellite cell activation and myogenic precursor cell expansion but inhibits myogenic differentiation. Thus, precise spatial and temporal regulation of Notch activity is necessary for efficient muscle regeneration. We report that the basic helix-loop-helix transcription factor Stra13 modulates Notch signaling in regenerating muscle. Upon injury, Stra13(-/-) mice exhibit increased cellular proliferation, elevated Notch signaling, a striking regeneration defect characterized by degenerated myotubes, increased mononuclear cells, and fibrosis. Stra13(-/-) primary myoblasts also exhibit enhanced Notch activity, increased proliferation, and defective differentiation. Inhibition of Notch signaling ex vivo and in vivo ameliorates the phenotype of Stra13(-/-) mutants. We demonstrate in vitro that Stra13 antagonizes Notch activity and reverses the Notch-imposed inhibition of myogenesis. Thus, Stra13 plays an important role in postnatal myogenesis by attenuating Notch signaling to reduce myoblast proliferation and promote myogenic differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas de Homeodomínio/fisiologia , Receptores Notch/antagonistas & inibidores , Receptores Notch/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Células Cultivadas , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Transdução de Sinais/genética
6.
Hum Mol Genet ; 18(22): 4304-16, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19679564

RESUMO

Duchenne Muscular Dystrophy (DMD), caused by loss of dystrophin is characterized by progressive muscle cell necrosis. However, the mechanisms leading to muscle degeneration in DMD are poorly understood. Here, we demonstrate that Stra13 protects muscle cells from oxidative damage, and its absence leads to muscle necrosis in response to injury in Stra13-deficient mice. Interestingly, Stra13-/- mutants express elevated levels of TNFalpha, reduced levels of heme-oxygenase-1, and display apparent signs of oxidative stress prior to muscle death. Moreover, Stra13-/- muscle cells exhibit an increased sensitivity to pro-oxidants, and conversely, Stra13 overexpression provides resistance to oxidative damage. Consistently, treatment with anti-oxidant N-acetylcysteine ameliorates muscle necrosis in Stra13-/- mice. We also demonstrate that Stra13 expression is elevated in muscles from dystrophin-deficient (mdx) mice, and mdx/Stra13-/- double mutants exhibit an early onset of muscle degeneration. Our studies underscore the importance of oxidative stress-mediated muscle degeneration in muscular dystrophy, and reveal the contribution of Stra13 in maintenance of muscle integrity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Estresse Oxidativo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Mioblastos/metabolismo , Necrose
7.
Neuroendocrinology ; 91(3): 268-78, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20389030

RESUMO

Gastroenteropancreatic (GEP) endocrine tumors are hypervascular tumors able to synthesize and secrete high amounts of VEGF. We aimed to study the regulation of VEGF production in GEP endocrine tumors and to test whether some of the drugs currently used in their treatment, such as somatostatin analogues and mTOR inhibitors, may interfere with VEGF secretion. We therefore analyzed the effects of the somatostatin analogue octreotide, the mTOR inhibitor rapamycin, the PI3K inhibitor LY294002, the MEK1 inhibitor PD98059 and the p38 inhibitor SB203850 on VEGF secretion, assessed by ELISA and Western blotting, in three murine endocrine cell lines, STC-1, INS-r3 and INS-r9. Octreotide and rapamycin induced a significant decrease in VEGF production by all three cell lines; LY294002 significantly inhibited VEGF production by STC-1 and INS-r3 only. We detected no effect of PD98059 whereas SB203850 significantly inhibited VEGF secretion in INS-r3 and INS-r9 cells only. By Western blotting analysis, we observed decreased intracellular levels of VEGF and HIF-1alpha under octreotide, rapamycin and LY294002. For rapamycin and LY294002, this effect was likely mediated by the inhibition of the mTOR/HIF-1/VEGF pathway. In addition to its well-known anti-secretory effects, octreotide may also act through the inhibition of the PI3K/Akt pathway, as suggested by the decrease in Akt phosphorylation detected in all three cell lines. In conclusion, our study points out to the complex regulation of VEGF synthesis and secretion in neoplastic GEP endocrine cells and suggests that the inhibition of VEGF production by octreotide and rapamycin may contribute to their therapeutic effects.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Tumores Neuroendócrinos/enzimologia , Tumores Neuroendócrinos/metabolismo , Octreotida/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Imidazóis/farmacologia , Insulina/metabolismo , Secreção de Insulina , MAP Quinase Quinase 1/antagonistas & inibidores , Camundongos , Morfolinas/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Piridinas/farmacologia , Ratos , Sirolimo/farmacologia , Somatostatina/efeitos dos fármacos , Somatostatina/metabolismo , Serina-Treonina Quinases TOR , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
8.
Gastroenterology ; 135(5): 1698-1709.e2, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18775714

RESUMO

BACKGROUND & AIMS: Missense mutations account for 30% of mutations identified in patients with the multiple endocrine neoplasia type 1 (MEN1) syndrome. They raise several issues: the distinction between pathogenic mutations and polymorphisms is sometimes difficult and the functional effects of missense mutations are unclear. We aimed to evaluate the functional consequences of missense MEN1 mutations in an appropriate endocrine cellular context. METHODS: From the INS-1 insulinoma cell line, we established clones conditionally over expressing wild-type (WT) menin or its A160T, H317Y, and A541T variants. We compared the consequences of WT or variant menin over expression on apoptotic response after gamma-irradiation and analyzed the interactions of these proteins with p53. RESULTS: WT menin over expression sensitized INS-r3 cells to apoptosis through amplification of caspase-3 activation, increased p53 acetylation, and accelerated p21 activation; moreover, over expressed WT menin could be recovered in p53-containing complexes. For all 3 missense mutations tested, the functional effects observed with WT were impaired significantly and only low amounts of variant menin proteins were recovered in p53-containing complexes. CONCLUSIONS: Taking advantage of a new endocrine cellular model, we show a loss of function for 2 missense disease-related menin mutants and for a controversial variant as well. Furthermore, our results suggest the existence of functional interactions between p53 and menin for the control of apoptosis, which may cast new light on the mechanisms of endocrine tumorigenesis.


Assuntos
Apoptose/efeitos dos fármacos , DNA de Neoplasias/genética , Neoplasia Endócrina Múltipla Tipo 1/genética , Mutação de Sentido Incorreto , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas/genética , Contagem de Células , Proliferação de Células , Técnica Indireta de Fluorescência para Anticorpo , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Humanos , Immunoblotting , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Neoplasia Endócrina Múltipla Tipo 1/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/metabolismo , Células Tumorais Cultivadas
9.
Mol Cancer Ther ; 17(1): 60-72, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29051320

RESUMO

Streptozotocin-based chemotherapy is the first-line chemotherapy recommended for advanced pancreatic neuroendocrine tumors (pNETs), whereas targeted therapies, including mTOR inhibitors, are available in second-line treatment. Unfortunately, objective response rates to both treatments are limited. Because mTOR pathway activation, commonly observed in pNETs, has been reported as one of the major mechanisms accounting for chemoresistance, we investigated the potential benefit of mTOR inhibition combined with streptozotocin treatment in a subset of pNETs, namely insulinomas. To evaluate the potential of mTOR inhibition in combination with streptozotocin, we selected four different inhibitors acting at various levels of the pathway (everolimus: inhibition of mTORC1; MK-2206: inhibition of AKT; BKM120: inhibition of PI3K, mTORC1, and mTORC2; and BEZ235: inhibition of mTORC1 and mTORC2). Effects on cell viability and apoptosis were assessed in insulinoma cell lines INS-1E (rat) and MIN6 (mouse) in vitro and were confirmed in vivo by using a mouse model of hepatic tumor dissemination after intrasplenic xenograft. In vitro, all four combinations display synergistic effects. These combinations lead to heterogeneous mTOR pathway inhibition, in agreement with their respective target, and increased apoptosis. In vivo, tumor growth in the liver was significantly inhibited by combining streptozotocin with everolimus (P = 0.0014), BKM120 (P = 0.0092), or BEZ235 (P = 0.008) as compared to each agent alone. These results suggest that targeting the mTOR pathway in combination with streptozotocin could be of potential benefit for insulinomas and pNET patients and thus support further clinical investigations. Mol Cancer Ther; 17(1); 60-72. ©2017 AACR.


Assuntos
Insulinoma/tratamento farmacológico , Estreptozocina/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/uso terapêutico , Animais , Feminino , Humanos , Insulinoma/patologia , Camundongos , Camundongos Nus , Estreptozocina/farmacologia , Serina-Treonina Quinases TOR/farmacologia
10.
Oncotarget ; 8(13): 20974-20987, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423496

RESUMO

mTOR and Unfolded Protein Response (UPR) are two signaling pathways frequently activated in cancer cells. The mTOR pathway has been shown to be up-regulated in most gastroenteropancreatic neuroendocrine tumors. In contrast, little is known about the UPR status in neoplastic neuroendocrine cells. However, these hormone-producing cells are likely to present distinctive adaptations of this pathway, as other secretory cells. We therefore analyzed the status of the three axes of UPR and their relation to mTOR pathway in two gastrointestinal neuroendocrine tumors (GI-NET) cell lines STC-1 and GluTag. At baseline, pharmacological inducers activate the three arms of UPR: PERK, ATF6 and IRE1. Although hypoxia stimulates the PERK, ATF6 and IRE-1 pathways in both cell lines, glucose depletion activates UPR only in STC-1 cell line. Strikingly, P-p70S6K1 increases concomitantly to P-PERK and BiP in response to thapsigargin treatment, glucose depletion or hypoxia. We found that different mTOR inhibitors activate the PERK signaling pathway. To confirm that mTOR inhibition modulates PERK activation, we inhibited PERK and showed that it decreased cell viability when associated to mTOR inhibition, indicating that mTOR drives a PERK-dependent survival pathway. In conclusion, in GI-NET cell lines, UPR signaling is functional and PERK arm is induced by mTOR inhibition. These observations open up new perspectives for therapeutic strategies: the crosstalk between mTOR and UPR might contribute to the resistance to mTOR inhibitors and could be targeted by mTOR and PERK inhibitors in combination therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Gastrointestinais/patologia , Proteínas de Choque Térmico/metabolismo , Tumores Neuroendócrinos/patologia , Serina-Treonina Quinases TOR/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo , Apoptose , Biomarcadores Tumorais/metabolismo , Hipóxia Celular , Chaperona BiP do Retículo Endoplasmático , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Glucose , Proteínas de Choque Térmico/antagonistas & inibidores , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células Tumorais Cultivadas , eIF-2 Quinase/antagonistas & inibidores
11.
J Mol Biol ; 333(1): 87-102, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-14516745

RESUMO

Our previous studies on the human MEN1 (multiple endocrine neoplasia type 1) gene revealed heterogeneity of MEN1 2.8 kb transcripts related to variation in their 5' UTR only. Six distinct exons 1 (e1A-e1F) were isolated that suggested the existence of multiple but not already identified transcriptional start sites (TSS) and of a complex transcriptional control. Identification of a minimal promoter region and its adjacent regulatory regions appears an inescapable step to the understanding of MEN1 gene transcriptional regulation in normal and pathological situations. For this purpose, we subcloned the approximately 2000 bp region situated directly upstream of the exon 2 in front of a luciferase reporter gene, and we analyzed functional consequences of 5' and 3' serial deletions, comparatively in a series of endocrine versus non-endocrine cell lines. Primer extension and RPA experiments demonstrate that in HEK293 cells transcription initiated simultaneously at several points in endogenous MEN1 promoter as well as in transfected promoter fragments in reporter plasmids, mainly in Inr elements that are efficiently employed to synthetize previously described exons e1A-e1D. Functional consequences of TSS deletion are directly related to cellular context. The minimal promoter region is localized between -135 and -36. Five large adjacent cis-regulatory regions (UR1-UR5) exist upstream of this minimal promoter region, whose activity depend not only on the cellular context but also on the presence of a downstream sequence DR1. Five small cis-regulatory elements (C1-C5) are localized between -325 and -107. Overexpression of exogenous menin, the MEN1 gene's product, in mouse embryonic fibroblasts from Men1(-/-) knock-out mice dose-dependently decreases MEN1 promoter activity, through sequences surrounding the minimal promoter. Our data highlight the existence of a complex transcriptional regulation of the MEN1 gene, whose activity is clearly modulated depending not only on the cellular context but also on menin intracellular levels. They are the molecular bases required for a future understanding of a potential specific transcription control in endocrine cells.


Assuntos
Regulação da Expressão Gênica , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas , Sequência de Bases , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Deleção de Sequência
12.
Oncotarget ; 6(34): 36731-45, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26447612

RESUMO

Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs.SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways.This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy.


Assuntos
Orientação de Axônios/fisiologia , Neoplasias do Íleo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tumores Neuroendócrinos/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Neoplasias do Íleo/genética , Neoplasias do Íleo/patologia , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Transdução de Sinais
13.
Hum Mutat ; 20(1): 35-47, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12112656

RESUMO

Multiple Endocrine Neoplasia type 1 (MEN1) is an autosomal dominant disease characterized by endocrine tumors of the parathyroids, the pancreatic islets, and the anterior pituitary. The MEN1 gene encodes menin, a nuclear protein interacting with JunD/AP1, Smad3, NFkappaB, and other proteins involved in transcription and cell growth regulation. Here, by exhaustive sequence analysis of 170 probands/families collected through a French clinical network, we identified 165 mutations located in coding parts of the MEN1 gene, which represent 114 distinct MEN1 germline alterations. These mutations have been included in a MEN1-locus specific database available on the world wide web together with approximately 240 germline and somatic MEN1 mutations listed from international published data. Our mutation series included 56 frameshifts, 23 nonsense, 27 missense, and eight deletion or insertion in-frame mutations. Mutations were spread over the entire coding sequence. Taken together, most missense and in-frame MEN1 genomic alterations affect one or all domains of menin interacting with JunD [codons 1-40; 139-242; 323-428], Smad3 [distal to codon 478], and NFkappaB [codons 276-479], three major effectors in transcription and cell growth regulation. No correlation has been observed between genotype and MEN1 phenotype. We suggest that the knowledge of structure and location of a specific mutation has not been useful in clinical practice for the follow-up of affected patients and asymptomatic gene carriers. Our results provide the largest series of MEN1 mutations published to date. They will be a useful tool for further studies focusing on the functional effects of missense mutations and understanding which mechanisms or pathways related to multiple menin interactions might be involved in tumorigenesis of endocrine cells.


Assuntos
Mutação em Linhagem Germinativa , Neoplasia Endócrina Múltipla Tipo 1/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas , Sítios de Ligação/genética , Análise Mutacional de DNA , DNA de Neoplasias/química , DNA de Neoplasias/genética , Bases de Dados como Assunto , Saúde da Família , Genótipo , Humanos , Neoplasia Endócrina Múltipla Tipo 1/patologia , Fenótipo
14.
J Pharm Biomed Anal ; 93: 118-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24183932

RESUMO

Functional consequences of mutations in predisposition genes for familial cancer syndromes remain often elusive, especially when the corresponding gene products play pleiotropic functions and interact with numerous partners. Understanding the consequences of these genetic alterations requires access to their functional effects at the phenotypic level. Nuclear magnetic resonance (NMR) has emerged as a promising functional genomics probe, through its ability to monitor the consequences of genetic variations at the biochemical level. Here, we determine by NMR the metabolic perturbations associated with different disease-related mutations in the MEN1 gene, responsible for the multiple endocrine neoplasia syndrome, type 1 (MEN1), an example of hereditary cancer. The MEN1 gene encodes the Menin protein. Based on a cellular model that allows exogenous overexpression of either the wild type (WT) Menin protein or disease-related variant forms, we evaluate the feasibility of using metabolic profiles to discriminate cells with WT versus variant Menin overexpression. High-resolution magic angle spinning (HRMAS) NMR of whole cells allows to determine the metabolic features associated with overexpression of WT Menin as compared to the one of six different missense variants observed in MEN1 patients. We then identify several statistically significant individual metabolites associated with the metabolic signature of pathogenic versus WT variants. Whether such a metabolic phenotyping approach using cell lines could be exploited as a functional test in a human genetic cancer syndrome is further discussed.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Modelos Biológicos , Neoplasia Endócrina Múltipla Tipo 1/genética , Proteínas Proto-Oncogênicas/genética , Animais , Estudos de Viabilidade , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação de Sentido Incorreto , Ratos
15.
J Biol Chem ; 283(37): 25692-25705, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18424439

RESUMO

Unchecked accumulation of reactive oxygen species (ROS) compromises maintenance of hematopoietic stem cells. Regulation of ROS by the tumor suppressor protein ataxia telangiectasia mutated (ATM) is critical for preserving the hematopoietic stem cell pool. In this study we demonstrate that the Foxo3 member of the Forkhead Box O (FoxO) family of transcription factors is essential for normal ATM expression. In addition, we show that loss of Foxo3 leads to defects in hematopoietic stem cells, and these defects result from an overaccumulation of ROS. Foxo3 suppression of ROS in hematopoietic stem cells is mediated partly by regulation of ATM expression. We identify ROS-independent modulations of ATM and p16(INK4a) and ROS-mediated activation of p53/p21(CIP1/WAF1/Sdi1) tumor suppressor pathways as major contributors to Foxo3-null hematopoietic stem cells defects. Our studies demonstrate that Foxo3 represses ROS in part via regulation of ATM and that this repression is required for maintenance of the hematopoietic stem cell pool.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Antioxidantes/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Genótipo , Células-Tronco Hematopoéticas/metabolismo , Heterozigoto , Camundongos , Modelos Biológicos , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA