RESUMO
Immunity against different Mycobacteria species targeting the lung requires distinctly different pulmonary immune responses for bacterial clearance. Many parameters of acquired and regulatory immune responses differ quantitatively and qualitatively from immunity during infection with Mycobacteria species. Nontuberculosis Mycobacteria species (NTM) Mycobacterium avium- (M avium), Mycobacterium abscessus-(M abscessus), and the Mycobacteria species Mycobacterium tuberculosis-(Mtb). Herein, we discuss the potential implications of acquired and regulatory immune responses in the context of animal and human studies, as well as future directions for efforts to treat Mycobacteria diseases.
Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Mycobacterium aviumRESUMO
Antibiotic therapy of infections caused by the emerging pathogen Mycobacterium abscessus is challenging due to the organism's inherent resistance to clinically available antimicrobials. The low bactericidal potency of currently available treatment regimens is of concern and testifies to the poor therapeutic outcomes for pulmonary M. abscessus infections. Mechanistically, we demonstrate here that the acetyltransferase Eis2 is responsible for the lack of bactericidal activity of amikacin, the standard aminoglycoside used in combination treatment. In contrast, the aminoglycoside apramycin, with a distinct structure, is not modified by any of the pathogen's innate aminoglycoside resistance mechanisms and is not affected by the multidrug resistance regulator WhiB7. As a consequence, apramycin uniquely shows potent bactericidal activity against M. abscessus. This favorable feature of apramycin is reflected in a mouse model of pulmonary M. abscessus infection, which demonstrates superior activity, compared with amikacin. These findings encourage the development of apramycin for the treatment of M. abscessus infections and suggest that M. abscessus eradication in pulmonary disease may be within therapeutic reach.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Nebramicina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Nebramicina/uso terapêuticoRESUMO
Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains.IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.
Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/métodos , Micobacteriófagos/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologiaRESUMO
GTPases are molecular switches, which regulate a variety of cellular processes such as cell polarity, gene transcription, microtubule dynamics, cell-cycle etc. In this paper, we characterize a Ca2+-binding protein from Entamoeba histolytica (EhCaBP6) as a novel GTPase. We locate the active site for GTP hydrolysis within the C-terminal domain of EhCaBP6, although it requires full length protein for its complete range of activity. Using NMR studies, we observe that GTP binding induces conformational change in EhCaBP6. The identification of this novel and unusual Ca2+-dependent GTPase is important to elucidate the unconventional cell cycle of E. histolytica.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Entamoeba histolytica/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Ligação ao Cálcio/química , Entamoeba histolytica/química , Entamebíase/parasitologia , GTP Fosfo-Hidrolases/química , Guanosina Trifosfato/metabolismo , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Proteínas de Protozoários/químicaRESUMO
Cell cycle of Entamoeba histolytica, the etiological agent of amoebiasis, follows a novel pathway, which includes nuclear division without the nuclear membrane disassembly. We report a nuclear localized Ca2+-binding protein from E. histolytica (abbreviated hereafter as EhCaBP6), which is associated with microtubules. We determined the 3D solution NMR structure of EhCaBP6, and identified one unusual, one canonical and two non-canonical cryptic EF-hand motifs. The cryptic EF-II and EF-IV pair with the Ca2+-binding EF-I and EF-III, respectively, to form a two-domain structure similar to Calmodulin and Centrin proteins. Downregulation of EhCaBP6 affects cell proliferation by causing delays in transition from G1 to S phase, and inhibition of DNA synthesis and cytokinesis. We also demonstrate that EhCaBP6 modulates microtubule dynamics by increasing the rate of tubulin polymerization. Our results, including structural inferences, suggest that EhCaBP6 is an unusual CaBP involved in regulating cell proliferation in E. histolytica similar to nuclear Calmodulin.
Assuntos
Proteínas de Ligação ao Cálcio/química , Entamoeba histolytica/genética , Entamebíase/parasitologia , Modelos Moleculares , Motivos de Aminoácidos , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Entamoeba histolytica/fisiologia , Humanos , Espectroscopia de Ressonância Magnética , Microtúbulos/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trofozoítos , Tubulina (Proteína)/metabolismoRESUMO
We report the observation of single-site phosphorylation in a His-tag sequence N-terminally attached to a recombinant protein (UVI31+) in vitro. This modification was detected at position 23â¯at a serine residue of the His-tag sequence encoded by the vector pET28a. Furthermore, the phosphorylated tag sequence was found to be dephosphorylated by the action of alkaline phosphatases. The functional activity and dynamics of the protein carrying the His-tag sequence were unchanged after phosphorylation. The possibility of phosphorylation within the N-terminal His-tag demonstrates that care has to be taken upon analysis of post-translational modifications via mass spectrometry for recombinant protein expression strategies.
Assuntos
Proteínas Recombinantes de Fusão/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fosfatase Alcalina/metabolismo , Histidina/genética , Histidina/metabolismo , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fosfopeptídeos/análise , Fosforilação , Proteínas Recombinantes de Fusão/metabolismoRESUMO
The reliability and accuracy of conformational or functional studies of any novel multidomain protein rely on the quality of protein. The bottleneck in structural studies with the complete Big_2 domain containing proteins like LigA, LigB or MpIBP is usually their large molecular size owing to their multidomain (>10-12 domains) architectures. Interestingly, a soil bacterium Paenarthrobacter aurescens TC1, harbours a gene that encodes a protein comprising of four predicted Big_2 domains. We report here the expression and purification of this novel, multiple Big_2 domains containing protein, Arig of P. aurescens TC1. During overexpression, recombinant Arig formed inclusion bodies and hence was purified by on-column refolding. The refolded Arig revealed a ß-sheet conformation and a well-resolved near-UV CD spectra but did not exhibit a well-dispersed 2D [1H-15N]-HSQC NMR spectrum, as expected for a well-folded ß-sheet native conformation. We, therefore, further optimized Arig overexpression in the soluble fraction by including osmolytes. CD spectroscopic and 2D [1H-15N]-HSQC analyses consolidate that Arig purified alternatively has a well-folded native conformation. While we describe different strategies for purification of Arig, we also present the spectral properties of this novel all-ß-sheet protein.
Assuntos
Proteínas de Bactérias/genética , Expressão Gênica , Micrococcaceae/metabolismo , Redobramento de Proteína , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismoRESUMO
Borrelia burgdorferi genome harbors several paralogous gene families (pgf) that can encode immunogenic proteins of unknown function. Protein-protein interaction assays using a transmission-blocking vaccine candidate, BBA52, as bait identified an interacting partner in spirochetes-a member of pgf 54, annotated as BBI39. We show that BBI39 is a surface-exposed membrane antigen that is immunogenic during spirochete infection, despite the gene being primarily transcribed in the vector with a transient expression in the host only at tick-bite sites. Immunization of rodents with BBI39, or a diverse paralog, BBI36, or their combination impaired pathogen acquisition by the vector, transmission from ticks to hosts, or induction of disease. High-titer BBI39 immunoglobulin G antibodies, which have borreliacidal properties, could be generated through routine subcutaneous or oral immunization, further highlighting use of BBI39 proteins as novel Lyme disease vaccines that can target pathogens in the host or in ticks.
Assuntos
Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/imunologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/imunologia , Vacinas contra Doença de Lyme/imunologia , Animais , Articulação do Tornozelo/patologia , Antígenos de Superfície/imunologia , Interações Hospedeiro-Patógeno , Ixodes/imunologia , Doença de Lyme/prevenção & controle , Camundongos , Camundongos Endogâmicos C3H , Mapeamento de Interação de Proteínas , VacinaçãoRESUMO
Mycobacterium tuberculosis (Mtb) is a phenomenally successful human pathogen having evolved mechanisms that allow it to survive within the hazardous environment of macrophages and establish long term, persistent infection in the host against the control of cell-mediated immunity. One such mechanism is mediated by the truncated hemoglobin, HbN, of Mtb that displays a potent O2-dependent nitric oxide dioxygenase activity and protects its host from the toxicity of macrophage-generated nitric oxide (NO). Here we demonstrate for the first time that HbN is post-translationally modified by glycosylation in Mtb and remains localized on the cell membrane and the cell wall. The glycan linkage in the HbN was identified as mannose. The elevated expression of HbN in Mtb and M. smegmatis facilitated their entry within the macrophages as compared with isogenic control cells, and mutation in the glycan linkage of HbN disrupted this effect. Additionally, HbN-expressing cells exhibited higher survival within the THP-1 and mouse peritoneal macrophages, simultaneously increasing the intracellular level of proinflammatory cytokines IL-6 and TNF-α and suppressing the expression of co-stimulatory surface markers CD80 and CD86. These results, thus, suggest the involvement of HbN in modulating the host-pathogen interactions and immune system of the host apart from protecting the bacilli from nitrosative stress inside the activated macrophages, consequently driving cells toward increased infectivity and intracellular survival.
Assuntos
Proteínas de Bactérias/imunologia , Espaço Intracelular/imunologia , Mycobacterium tuberculosis/imunologia , Hemoglobinas Truncadas/imunologia , Sequência de Aminoácidos , Animais , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Linhagem Celular Tumoral , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Glicosilação , Interações Hospedeiro-Patógeno/imunologia , Humanos , Espaço Intracelular/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Processamento de Proteína Pós-Traducional/imunologia , Homologia de Sequência de Aminoácidos , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismoRESUMO
The discovery of several functional interactions where one or even both partners remain disordered has demonstrated that specific interactions do not necessarily require well-defined intermolecular interfaces. Here we describe a fuzzy protein-RNA complex formed by the intrinsically unfolded protein PYM and RNA. PYM is a cytosolic protein, which has been reported to bind the exon junction complex (EJC). In the process of oskar mRNA localization in Drosophila melanogaster, removal of the first intron and deposition of the EJC are essential, while PYM is required to recycle the EJC components after localization has been accomplished. Here we demonstrate that the first 160 amino acids of PYM (PYM1-160) are intrinsically disordered. PYM1-160 binds RNA independently of its nucleotide sequence, forming a fuzzy protein-RNA complex that is incompatible with PYM's function as an EJC recycling factor. We propose that the role of RNA binding consists in down-regulating PYM activity by blocking the EJC interaction surface of PYM until localization has been accomplished. We suggest that the largely unstructured character of PYM may act to enable binding to a variety of diverse interaction partners, such as multiple RNA sequences and the EJC proteins Y14 and Mago.
RESUMO
Introduction: A strong epidemiologic link exists between cigarette smoke (CS) exposure and susceptibility to tuberculosis (TB). Macrophage and murine studies showed that CS and nicotine impair host-protective immune cells against Mycobacterium tuberculosis (MTB) infection. While CS and nicotine may activate T regulatory cells (Tregs), little is known about how CS may affect these immunosuppressive cells with MTB infection. Methods: We investigated whether CS-exposed Tregs could exacerbate MTB infection in co-culture with human macrophages and in recipient mice that underwent adoptive transfer of Tregs from donor CS-exposed mice. Results: We found that exposure of primary human Tregs to CS extract impaired the ability of unexposed human macrophages to control an MTB infection by inhibiting phagosome-lysosome fusion and autophagosome formation. Neutralizing CTLA-4 on the CS extract-exposed Tregs abrogated the impaired control of MTB infection in the macrophage and Treg co-cultures. In Foxp3+GFP+DTR+ (Thy1.2) mice depleted of endogenous Tregs, adoptive transfer of Tregs from donor CS-exposed B6.PL(Thy1.1) mice with subsequent MTB infection of the Thy1.2 mice resulted in a greater burden of MTB in the lungs and spleens than those that received Tregs from air-exposed mice. Mice that received Tregs from donor CS-exposed mice and infected with MTB had modest but significantly reduced numbers of interleukin-12-positive dendritic cells and interferon-gamma-positive CD4+ T cells in the lungs, and an increased number of total programmed cell death protein-1 (PD-1) positive CD4+ T cells in both the lungs and spleens. Discussion: Previous studies demonstrated that CS impairs macrophages and host-protective T effector cells in controlling MTB infection. We now show that CS-exposed Tregs can also impair control of MTB in co-culture with macrophages and in a murine model.
Assuntos
Fumar Cigarros , Mycobacterium tuberculosis , Tuberculose , Camundongos , Humanos , Animais , Linfócitos T Reguladores , Nicotina , Tuberculose/microbiologiaRESUMO
Electrocatalytic oxidation (EO) of carcinogenic 4-aminobiphenyl (4-ABP) aromatic amine was performed using Ti-RuO2 anodes. Current (I), pH, electrolysis time (t), and 4-ABP initial concentration (Co ) were selected as EO parameters, and their effects on %4-ABP removal (R1 ) and energy consumed (R2 ) were studied. Experimental design, parameters optimization, and their interaction with responses R1 and R2 were performed using response surface methodology. At optimized parameters, %TOC removal and 4-BP mineralization current efficiency (%MCE) were assessed to evaluate the potential of Ti/RuO2 anodes towards 4-ABP mineralization. Simultaneous TOC and 4-ABP degradation kinetics were also studied to evaluate the competition in 4-ABP mineralization and degradation. Further, UPLC-Q-TOF-MS analysis was performed to identify the 4-ABP transformation products during the EO, and a mechanism describing the EO transformation was proposed. At optimum parameters (I = 1.2 A; pH = 4.0; t = 30 min; Co = 30 ppm), responses were found to be R1 = 60.25%; R2 = 2.49 kWh/g of 4-ABP removed. %TOC removal and %MCE were 52.4% and 34.2%, respectively. PRACTITIONER POINTS: 4-Aminobiphenyl electro-oxidation (EO) was explored using Ti/RuO2 anode. Achieved 34.2% mineralization current efficiency, 52.4% TOC and 61.3% TKN removal. Three electro-oxidation transformation products of 4-ABP were detected. 4-Aminobiphenyl was found degrading at ≈1.6 times higher rate than TOC A plausible EO transformation pathway and mechanism was proposed.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Aminas , Compostos de Aminobifenil , Eletrodos , Cinética , Oxirredução , Titânio , Águas Residuárias/análise , Poluentes Químicos da Água/análiseRESUMO
Introduction Platelet-related disease may result from an abnormal platelet count, namely thrombocytopenia or thrombocythemia, or altered platelet function, and thus is associated with bleeding or with thrombotic manifestation. Thrombocytopenia is defined as a subnormal number of platelets i.e. less than 1,50,000/µL in the peripheral blood. It can lead to inadequate clot formation and increased risk of bleeding and is a common indication for bone marrow aspiration and biopsy. Methodology The study was a hospital-based prospective observational study from January 2019 to June 2020. All cases of thrombocytopenia which were diagnosed first on haematology analyser (platelet counts <150,000/µL) and confirmed subsequently by peripheral smear with/without bleeding manifestations due to thrombocytopenia were taken up for the study. The aims and objectives of this study were to find out the epidemiological spectrum and prevalence of thrombocytopenia according to age and sex along with the correlation of haematological and bone marrow findings of such patients. Result This study comprised 100 cases of thrombocytopenia, with acute leukaemia accounting for the majority (28/100), followed by dimorphic anaemia (15/100), megaloblastic anaemia (11/100), hypocellular marrow, infection, and other conditions. All cases (100%) displayed the clinical symptom of widespread weakness and pallor, which was followed by fatiguability (72%) and dyspnoea (48%). Many thrombocytopenic individuals also had lymphadenopathy and hepatomegaly, the last two least common appearances. Lymphadenopathy and hepatomegaly which were the last two least common presentations were present in a significant number of thrombocytopenic patients. Conclusion The study of bone marrow is helpful in the diagnosis of thrombocytopenia cases. Bone marrow examination is a simple, safe outpatient procedure and yields an impressive amount of diagnostically valuable data in a wide variety of disorders of thrombocytopenia. An evaluation of the patient's bone marrow unquestionably aids in the early diagnosis and treatment of their ailment.
RESUMO
Little is known of the lung cellular immunophenotypes in patients with non-tuberculous mycobacterial lung disease (NTM-LD). Flow-cytometric analyses for the major myeloid and lymphoid cell subsets were performed in less- and more-diseased areas of surgically resected lungs from six patients with NTM-LD and two with Pseudomonas aeruginosa lung disease (PsA-LD). Lymphocytes, comprised mainly of NK cells, CD4+ and CD8+ T cells, and B cells, accounted for ~60% of all leukocytes, with greater prevalence of T and B cells in more-diseased areas. In contrast, fewer neutrophils were found with decreased number in more-diseased areas. Compared to NTM-LD, lung tissues from patients with PsA-LD demonstrated relatively lower numbers of T and B lymphocytes but similar numbers of NK cells. While this study demonstrated a large influx of lymphocytes into the lungs of patients with chronic NTM-LD, further analyses of their phenotypes are necessary to determine the significance of these findings.
RESUMO
A search for alternative Mycobacterium abscessus treatments led to our interest in the two-component regulator DosRS, which, in Mycobacterium tuberculosis, is required for the bacterium to establish a state of nonreplicating, drug-tolerant persistence in response to a variety of host stresses. We show here that the genetic disruption of dosRS impairs the adaptation of M. abscessus to hypoxia, resulting in decreased bacterial survival after oxygen depletion, reduced tolerance to a number of antibiotics in vitro and in vivo, and the inhibition of biofilm formation. We determined that three antimalarial drugs or drug candidates, artemisinin, OZ277, and OZ439, can target DosS-mediated hypoxic signaling in M. abscessus and recapitulate the phenotypic effects of genetically disrupting dosS. OZ439 displayed bactericidal activity comparable to standard-of-care antibiotics in chronically infected mice, in addition to potentiating the activity of antibiotics used in combination. The identification of antimalarial drugs as potent inhibitors and adjunct inhibitors of M. abscessus in vivo offers repurposing opportunities that could have an immediate impact in the clinic.
Assuntos
Antimaláricos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologiaRESUMO
Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.
RESUMO
Although almost all mycobacterial species are saprophytic environmental organisms, a few, such as Mycobacterium tuberculosis, have evolved to cause transmissible human infection. By analyzing the recent emergence and spread of the environmental organism M. abscessus through the global cystic fibrosis population, we have defined key, generalizable steps involved in the pathogenic evolution of mycobacteria. We show that epigenetic modifiers, acquired through horizontal gene transfer, cause saltational increases in the pathogenic potential of specific environmental clones. Allopatric parallel evolution during chronic lung infection then promotes rapid increases in virulence through mutations in a discrete gene network; these mutations enhance growth within macrophages but impair fomite survival. As a consequence, we observe constrained pathogenic evolution while person-to-person transmission remains indirect, but postulate accelerated pathogenic adaptation once direct transmission is possible, as observed for M. tuberculosis Our findings indicate how key interventions, such as early treatment and cross-infection control, might restrict the spread of existing mycobacterial pathogens and prevent new, emergent ones.
Assuntos
Doenças Transmissíveis Emergentes/microbiologia , Evolução Molecular , Aptidão Genética , Pulmão/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Mycobacterium abscessus/patogenicidade , Pneumonia Bacteriana/microbiologia , Doenças Transmissíveis Emergentes/transmissão , Conjuntos de Dados como Assunto , Epigênese Genética , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Mutação , Infecções por Mycobacterium não Tuberculosas/transmissão , Pneumonia Bacteriana/transmissão , Virulência/genéticaRESUMO
The global tuberculosis (TB) epidemic caused by the bacterial pathogen Mycobacterium tuberculosis (M.tb) continues unabated. The Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination is widely utilized worldwide to protect against infection with M.tb. BCG vaccine protection against TB has had widely varying results for reasons that are not well understood. BCG vaccine interference by non-tuberculosis (NTM) mycobacterial species has been implicated as the potential cause of reduced BCG vaccine efficacy against M.tb. Ongoing efforts to develop new vaccines for TB requires a thorough understanding of the effect of NTM exposure on BCG vaccine efficacy, which may ultimately be a critical determinant of success. We reviewed the conflicting reports on whether NTM interferes with the BCG vaccine, potential explanations to help resolve the controversy, and strategies for developing better animal models. Further studies are needed to longitudinally track the effects of NTM exposure on BCG vaccine-induced host-protective anti-TB immunity.
RESUMO
This manuscript describes the infection of mice and guinea pigs with mycobacteria via various routes, as well as necropsy methods for the determination of mycobacterial loads within target organs. Additionally, methods for cultivating mycobacteria and preparing stocks are described. The protocols outlined are primarily used for M. tuberculosis, but can also be used for the study of other non-tuberculosis mycobacterial species. A wide variety of animal models have been used to test new vaccines, drugs, and the impact of cigarette exposure. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Aerosol infection of mice with mycobacteria Basic Protocol 2: Aerosol infection of guinea pig with mycobacteria using a Madison chamber Alternate Protocol 1: Cigarette exposure prior to infection of mice with mycobacteria Alternate Protocol 2: Intravenous infection of mice with mycobacteria Basic Protocol 3: Necropsy methods for animals experimentally infected with mycobacteria Basic Protocol 4: Following the course of infection Basic Protocol 5: Measuring the animal immune response to infection Support Protocol: Cultivation of mycobacteria for use in animal experiments.
Assuntos
Modelos Animais de Doenças , Imunoensaio/métodos , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Cobaias , Humanos , CamundongosRESUMO
BACKGROUND: With the successful introduction of ART, the life expectancy of children living with HIV (CLHIV) is substantially increased. However, strict compliance is a necessary step to begin with as noncompliance is again associated with its own demerits of incomplete suppression and decreasing the overall survival of the patients. AIMS: The aim of this study was to measure factors associated with adherence to ART among CLHIV. MATERIALS AND METHODS: This is a 1-year follow-up study conducted from November 2012 to December 2013. A total of 171 children between 18 months and 15 years living with HIV and on ART attending the two ART centers of Delhi were enrolled in the study. Adherence and factors affecting adherence were obtained from the study participants using a semi-structured interview schedule. STATISTICAL ANALYSIS USED: Collected data were transformed into variables and analyzed into SPSS. All observations were in terms of mean, median, standard deviations, percentages, and proportions. Tests of significance such as Chi-square test and t-test were applied wherever required. RESULTS: In nearly 89% of the study participants, adherence to ART was ≥95% at the end of the study. The most common reason for nonadherence was forgetfulness (59%), and 57% of the parents/caretakers were facing monetary problems. Long distance, greater duration to reach center, and unavailability of the parents/caretakers were also quoted as problems. CONCLUSION: Adherence is genesis to successful treatment outcome and is strongly associated with availability of support by their parents/caretakers. Professional help along with guidance and encouragement is required not only at the caretaker level but also to the family as a whole.