Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Comput Biol ; 18(6): e1010236, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759459

RESUMO

Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.


Assuntos
Tubulina (Proteína) , Tirosina , Avaliação Pré-Clínica de Medicamentos , Microtúbulos/química , Modelos Teóricos
2.
JCI Insight ; 9(3)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165745

RESUMO

The impairment of left ventricular (LV) diastolic function with an inadequate increase in myocardial relaxation velocity directly results in lower LV compliance, increased LV filling pressures, and heart failure symptoms. The development of agents facilitating the relaxation of human cardiomyocytes requires a better understanding of the underlying regulatory mechanisms. We performed a high-content microscopy-based screening in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using a library of 2,565 human miRNA mimics and measured relaxation kinetics via high-computing analyses of motion movies. We identified hsa-miR-548v, a primate-specific miRNA, as the miRNA producing the largest increase in relaxation velocities. This positive lusitropic effect was reproduced in engineered cardiac tissues generated with healthy and BRAF T599R mutant hiPSC-CMs and was independent of changes in calcium transients. Consistent with improvements in viscoelastic responses to mechanical stretch, RNA-Seq showed that hsa-miR-548v downregulated multiple targets, especially components of the mechanosensing machinery. The exogenous administration of hsa-miR-548v in hiPSC-CMs notably resulted in a significant reduction of ANKRD1/CARP1 expression and localization at the sarcomeric I-band. This study suggests that the sarcomere I-band is a critical control center regulating the ability of cardiomyocytes to relax and is a target for improving relaxation and diastolic dysfunction.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Animais , Humanos , Cardiopatias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Miocárdio , Miócitos Cardíacos/metabolismo
3.
ESC Heart Fail ; 9(1): 519-530, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34841727

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with various causes that may influence prognosis. METHODS AND RESULTS: We extracted the electronic medical records for 2180 consecutive patients hospitalized between 2016 and 2019 for decompensated heart failure. Using a text mining algorithm looking for a left ventricular ejection fraction ≥50% and plasma brain natriuretic peptide level >100 pg/mL, we identified 928 HFpEF patients. We screened for a prevailing cause of HFpEF according to European guidelines and found that 418 (45.0%) patients had secondary HFpEF due to either myocardial (n = 125, 13.5%) or loading condition abnormalities (n = 293, 31.5%), while the remaining 510 (55.0%) patients had idiopathic HFpEF. We assessed the association between the causes of HFpEF and survival collected up to 31 December 2020 using Cox proportional hazards analysis. Even though patients with idiopathic HFpEF were older, frequently female, and had frequent co-morbidities and a higher crude mortality rate compared with secondary HFpEF patients, their prognosis was similar after adjustment for age and sex. Unsupervised clustering analysis revealed three main phenogroups with different distribution of idiopathic vs. secondary HFpEF. The phenogroup with the highest proportion of idiopathic HFpEF (69%) had (i) an excess rate of non-cardiac co-morbidities including chronic obstructive pulmonary disease (31%) or obesity (41%) and (ii) a better prognosis compared with the two other phenogroups enriched with secondary HFpEF. CONCLUSIONS: Aetiological classification provides clinical and prognostic information and may be useful to better decipher the clinical heterogeneity of HFpEF.


Assuntos
Insuficiência Cardíaca , Comorbidade , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Humanos , Prognóstico , Volume Sistólico , Função Ventricular Esquerda
4.
Biomedicines ; 9(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069816

RESUMO

Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.

5.
Cardiovasc Res ; 116(5): 894-907, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31584620

RESUMO

Cardiovascular diseases are among the main causes of morbidity and mortality in Western countries and considered as a leading public health issue. Therefore, there is a strong need for new disease models to support the development of novel therapeutics approaches. The successive improvement of genome editing tools with zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and more recently with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has enabled the generation of genetically modified cells and organisms with much greater efficiency and precision than before. The simplicity of CRISPR/Cas9 technology made it especially suited for different studies, both in vitro and in vivo, and has been used in multiple studies evaluating gene functions, disease modelling, transcriptional regulation, and testing of novel therapeutic approaches. Notably, with the parallel development of human induced pluripotent stem cells (hiPSCs), the generation of knock-out and knock-in human cell lines significantly increased our understanding of mutation impacts and physiopathological mechanisms within the cardiovascular domain. Here, we review the recent development of CRISPR-Cas9 genome editing, the alternative tools, the available strategies to conduct genome editing in cardiovascular cells with a focus on its use for correcting mutations in vitro and in vivo both in germ and somatic cells. We will also highlight that, despite its potential, CRISPR/Cas9 technology comes with important technical and ethical limitations. The development of CRISPR/Cas9 genome editing for cardiovascular diseases indeed requires to develop a specific strategy in order to optimize the design of the genome editing tools, the manipulation of DNA repair mechanisms, the packaging and delivery of the tools to the studied organism, and the assessment of their efficiency and safety.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Doenças Cardiovasculares/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Terapia Genética , Miócitos Cardíacos/metabolismo , Animais , Proteína 9 Associada à CRISPR/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Reparo do DNA , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Terapia Genética/efeitos adversos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/patologia , Fenótipo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA