Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Allergy Clin Immunol ; 143(2): 726-735, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29772310

RESUMO

BACKGROUND: Mutations in recombination-activating gene (RAG) 1 and RAG2 are associated with a broad range of clinical and immunologic phenotypes in human subjects. OBJECTIVE: Using a flow cytometry-based assay, we aimed to measure the recombinase activity of naturally occurring RAG2 mutant proteins and to correlate our results with the severity of the clinical and immunologic phenotype. METHODS: Abelson virus-transformed Rag2-/- pro-B cells engineered to contain an inverted green fluorescent protein (GFP) cassette flanked by recombination signal sequences were transduced with retroviruses encoding either wild-type or 41 naturally occurring RAG2 variants. Bicistronic vectors were used to introduce compound heterozygous RAG2 variants. The percentage of GFP-expressing cells was evaluated by using flow cytometry, and high-throughput sequencing was used to analyze rearrangements at the endogenous immunoglobulin heavy chain (Igh) locus. RESULTS: The RAG2 variants showed a wide range of recombination activity. Mutations associated with severe combined immunodeficiency and Omenn syndrome had significantly lower activity than those detected in patients with less severe clinical presentations. Four variants (P253R, F386L, N474S, and M502V) previously thought to be pathogenic were found to have wild-type levels of activity. Use of bicistronic vectors permitted us to assess more carefully the effect of compound heterozygous mutations, with good correlation between GFP expression and the number and diversity of Igh rearrangements. CONCLUSIONS: Our data support genotype-phenotype correlation in the setting of RAG2 deficiency. The assay described can be used to define the possible disease-causing role of novel RAG2 variants and might help predict the severity of the clinical phenotype.


Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/genética , Cadeias Pesadas de Imunoglobulinas/genética , Mutação/genética , Proteínas Nucleares/genética , Receptores de Antígenos de Linfócitos B/genética , Imunodeficiência Combinada Severa/genética , Adolescente , Linhagem Celular Transformada , Criança , Pré-Escolar , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Polimorfismo Genético
2.
Int J Cardiol Heart Vasc ; 52: 101385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38694268

RESUMO

Background: The recent Cardiovascular Disease in Adolescents with Chronic Disease (CDACD) study showed enhanced aortic stiffness and wall thickness in adolescents with various chronic disorders. Enhanced aortic stiffness can increase left ventricular (LV) afterload and trigger a cascade of adverse arterioventricular interaction. Here, we investigate the relation between aortic changes and LV function in the CDACD study participants. Methods: This cross-sectional study included 114 adolescents 12-18 years old with cystic fibrosis (CF, n = 24), corrected coarctation of the aorta (CoA, n = 25), juvenile idiopathic arthritis (JIA, n = 20), obesity (n = 20), and healthy controls (n = 25). Aortic pulse wave velocity (PWV), which reflects aortic stiffness, and aortic wall thickness (AWT) were assessed with cardiovascular magnetic resonance imaging (CMR). Echocardiography was employed to study conventional markers of LV function, as well as LV global longitudinal strain (LVGLS), which is an established (pre)clinical marker of LV dysfunction. Results: First, aortic PWV and AWT were increased in all chronic disease groups, compared to controls. Second, in adolescents with CoA, JIA, and obesity, echocardiography showed a decreased LVGLS, while LV dimensions and conventional LV function markers were similar to controls. Third, multivariable linear regression identified aortic PWV as the most important determinant of their decreased LVGLS (standardized ß -0.522, p < 0.001). Conclusions: The decreased LVGLS in several adolescent chronic disease groups was associated with enhanced aortic PWV, which might reflect adverse arterioventricular interaction. Whether the decreased LVGLS in the chronic disease groups could negatively impact their long-term cardiovascular outcomes requires further study.

3.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976644

RESUMO

Invariant natural killer T (iNKT) cells act at the interface between lipid metabolism and immunity because of their restriction to lipid antigens presented on CD1d by antigen-presenting cells (APCs). How foreign lipid antigens are delivered to APCs remains elusive. Since lipoproteins routinely bind glycosylceramides structurally similar to lipid antigens, we hypothesized that circulating lipoproteins form complexes with foreign lipid antigens. In this study, we used 2-color fluorescence correlation spectroscopy to show, for the first time to our knowledge, stable complex formation of lipid antigens α-galactosylceramide (αGalCer), isoglobotrihexosylceramide, and OCH, a sphingosine-truncated analog of αGalCer, with VLDL and/or LDL in vitro and in vivo. We demonstrate LDL receptor-mediated (LDLR-mediated) uptake of lipoprotein-αGalCer complexes by APCs, leading to potent complex-mediated activation of iNKT cells in vitro and in vivo. Finally, LDLR-mutant PBMCs of patients with familial hypercholesterolemia showed impaired activation and proliferation of iNKT cells upon stimulation, underscoring the relevance of lipoproteins as a lipid antigen delivery system in humans. Taken together, circulating lipoproteins form complexes with lipid antigens to facilitate their transport and uptake by APCs, leading to enhanced iNKT cell activation. This study thereby reveals a potentially novel mechanism of lipid antigen delivery to APCs and provides further insight into the immunological capacities of circulating lipoproteins.


Assuntos
Células T Matadoras Naturais , Humanos , Células Apresentadoras de Antígenos , Lipoproteínas/metabolismo
4.
J Am Heart Assoc ; 11(14): e024675, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861840

RESUMO

Background Adolescents with chronic disease are often exposed to inflammatory, metabolic, and hemodynamic risk factors for early atherosclerosis. Since postmortem studies have shown that atherogenesis starts in the aorta, the CDACD (Cardiovascular Disease in Adolescents with Chronic Disease) study investigated preclinical aortic atherosclerosis in these adolescents. Methods and Results The cross-sectional CDACD study enrolled 114 adolescents 12 to 18 years old with chronic disorders including juvenile idiopathic arthritis, cystic fibrosis, obesity, corrected coarctation of the aorta, and healthy controls with a corrected atrial septal defect. Cardiovascular magnetic resonance was used to assess aortic pulse wave velocity and aortic wall thickness, as established aortic measures of preclinical atherosclerosis. Cardiovascular magnetic resonance showed a higher aortic pulse wave velocity, which reflects aortic stiffness, and higher aortic wall thickness in all adolescent chronic disease groups, compared with controls (P<0.05). Age (ß=0.253), heart rate (ß=0.236), systolic blood pressure (ß=-0.264), and diastolic blood pressure (ß=0.365) were identified as significant predictors for aortic pulse wave velocity, using multivariable linear regression analysis. Aortic wall thickness was predicted by body mass index (ß=0.248) and fasting glucose (ß=0.242), next to aortic lumen area (ß=0.340). Carotid intima-media thickness was assessed using ultrasonography, and was only higher in adolescents with coarctation of the aorta, compared with controls (P<0.001). Conclusions Adolescents with chronic disease showed enhanced aortic stiffness and wall thickness compared with controls. The enhanced aortic pulse wave velocity and aortic wall thickness in adolescents with chronic disease could indicate accelerated atherogenesis. Our findings underscore the importance of the aorta for assessment of early atherosclerosis, and the need for tailored cardiovascular follow-up of children with chronic disease.


Assuntos
Coartação Aórtica , Doenças da Aorta , Aterosclerose , Rigidez Vascular , Adolescente , Coartação Aórtica/complicações , Doenças da Aorta/complicações , Doenças da Aorta/etiologia , Aterosclerose/etiologia , Espessura Intima-Media Carotídea , Criança , Doença Crônica , Estudos Transversais , Humanos , Análise de Onda de Pulso , Rigidez Vascular/fisiologia
5.
Sci Rep ; 11(1): 20082, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635725

RESUMO

Invariant Natural Killer T (iNKT) cells respond to the ligation of lipid antigen-CD1d complexes via their T-cell receptor and are implicated in various immunometabolic diseases. We considered that immunometabolic factors might affect iNKT cell function. To this end, we investigated iNKT cell phenotype and function in a cohort of adolescents with chronic disease and immunometabolic abnormalities. We analyzed peripheral blood iNKT cells of adolescents with cystic fibrosis (CF, n = 24), corrected coarctation of the aorta (CoA, n = 25), juvenile idiopathic arthritis (JIA, n = 20), obesity (OB, n = 20), and corrected atrial septal defect (ASD, n = 25) as controls. To study transcriptional differences, we performed RNA sequencing on a subset of obese patients and controls. Finally, we performed standardized co-culture experiments using patient plasma, to investigate the effect of plasma factors on iNKT cell function. We found comparable iNKT cell numbers across patient groups, except for reduced iNKT cell numbers in JIA patients. Upon ex-vivo activation, we observed enhanced IFN-γ/IL-4 cytokine ratios in iNKT cells of obese adolescents versus controls. The Th1-skewed iNKT cell cytokine profile of obese adolescents was not explained by a distinct transcriptional profile of the iNKT cells. Co-culture experiments with patient plasma revealed that across all patient groups, obesity-associated plasma factors including LDL-cholesterol, leptin, and fatty-acid binding protein 4 (FABP4) coincided with higher IFN-γ production, whereas high HDL-cholesterol and insulin sensitivity (QUICKI) coincided with higher IL-4 production. LDL and HDL supplementation in co-culture studies confirmed the effects of lipoproteins on iNKT cell cytokine production. These results suggest that circulating immunometabolic factors such as lipoproteins may be involved in Th1 skewing of the iNKT cell cytokine response in immunometabolic disease.


Assuntos
Artrite Juvenil/imunologia , Fibrose Cística/imunologia , Comunicação Interatrial/imunologia , Células T Matadoras Naturais/imunologia , Obesidade/fisiopatologia , Células Th1/imunologia , Adolescente , Artrite Juvenil/metabolismo , Artrite Juvenil/patologia , Estudos de Casos e Controles , Doença Crônica , Estudos Transversais , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Citocinas/metabolismo , Feminino , Comunicação Interatrial/metabolismo , Comunicação Interatrial/patologia , Humanos , Interferon gama/metabolismo , Masculino
6.
Front Immunol ; 9: 1192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892305

RESUMO

Invariant natural killer T (iNKT) cells are lipid-reactive T cells with profound immunomodulatory potential. They are unique in their restriction to lipid antigens presented in CD1d molecules, which underlies their role in lipid-driven disorders such as obesity and atherosclerosis. In this review, we discuss the contribution of iNKT cell activation to immunometabolic disease, metabolic programming of lipid antigen presentation, and immunometabolic activation of iNKT cells. First, we outline the role of iNKT cells in immunometabolic disease. Second, we discuss the effects of cellular metabolism on lipid antigen processing and presentation to iNKT cells. The synthesis and processing of glycolipids and other potential endogenous lipid antigens depends on metabolic demand and may steer iNKT cells toward adopting a Th1 or Th2 signature. Third, external signals such as toll-like receptor ligands, adipokines, and cytokines modulate antigen presentation and subsequent iNKT cell responses. Finally, we will discuss the relevance of metabolic programming of iNKT cells in human disease, focusing on their role in disorders such as obesity and atherosclerosis. The critical response to metabolic changes places iNKT cells at the helm of immunometabolic disease.


Assuntos
Apresentação de Antígeno , Antígenos CD1d/imunologia , Citocinas/imunologia , Glicolipídeos/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/imunologia , Animais , Humanos
7.
Sci Immunol ; 1(6)2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-28783691

RESUMO

Recombination-activating genes 1 and 2 (RAG1 and RAG2) play a critical role in T and B cell development by initiating the recombination process that controls the expression of T cell receptor (TCR) and immunoglobulin genes. Mutations in the RAG1 and RAG2 genes in humans cause a broad spectrum of phenotypes, including severe combined immunodeficiency (SCID) with lack of T and B cells, Omenn syndrome, leaky SCID, and combined immunodeficiency with granulomas or autoimmunity (CID-G/AI). Using next-generation sequencing, we analyzed the TCR and B cell receptor (BCR) repertoire in 12 patients with RAG mutations presenting with Omenn syndrome (n = 5), leaky SCID (n = 3), or CID-G/AI (n = 4). Restriction of repertoire diversity skewed usage of variable (V), diversity (D), and joining (J) segment genes, and abnormalities of CDR3 length distribution were progressively more prominent in patients with a more severe phenotype. Skewed usage of V, D, and J segment genes was present also within unique sequences, indicating a primary restriction of repertoire. Patients with Omenn syndrome had a high proportion of class-switched immunoglobulin heavy chain transcripts and increased somatic hypermutation rate, suggesting in vivo activation of these B cells. These data provide a framework to better understand the phenotypic heterogeneity of RAG deficiency.

8.
Expert Rev Clin Immunol ; 10(4): 521-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24450381

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is characterized by mononuclear cell infiltration of exocrine glands. T-cells have been shown to play a central role in tissue destruction and regulation of B-cell activity and the production of autoantibodies typifying pSS. Despite the fact that dendritic cells (DCs) are candidate key players in the activation of T- and B-cells in pSS, their contribution has been under evaluated. This manuscript reviews current insights in DC biology and examines literature on the role of DCs in the immunopathology of primary Sjögren's syndrome, focusing on the interplay between dendritic cells, epithelial cells and T-cells.


Assuntos
Células Dendríticas/imunologia , Células Epiteliais/imunologia , Síndrome de Sjogren/imunologia , Linfócitos T/imunologia , Células Dendríticas/patologia , Células Epiteliais/patologia , Humanos , Síndrome de Sjogren/patologia , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA