Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5698-5719, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38587186

RESUMO

AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.


Assuntos
Cromatina , Reparo do DNA , Proteínas de Ligação a DNA , Imunidade , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Recombinação Homóloga/genética , Imunidade/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/imunologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transativadores , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Int J Cancer ; 154(12): 2106-2120, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38353495

RESUMO

Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.3-G34W). The mechanisms by which these mutations promote malignancy are not completely understood. Here we show that cells expressing H3.3-G34W exhibit DNA double-strand breaks (DSBs) repair defects and increased cellular sensitivity to ionizing radiation (IR). Mechanistically, H3.3-G34W can be deposited to damaged chromatin, but in contrast to wild-type H3.3, does not interact with non-homologous end-joining (NHEJ) key effectors KU70/80 and XRCC4 leading to NHEJ deficiency. Together with defective cell cycle checkpoints reported previously, this DNA repair deficiency in H3.3-G34W cells led to accumulation of micronuclei and cytosolic DNA following IR, which subsequently led to activation of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, thereby inducing release of immune-stimulatory cytokines. These findings suggest a potential for radiotherapy for tumors expressing H3.3-G34W, which can be further improved by combination with STING agonists to induce immune-mediated therapeutic efficacy.


Assuntos
Distúrbios no Reparo do DNA , Histonas , Criança , Humanos , Histonas/genética , Nucleotidiltransferases/genética , Imunidade , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA