Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257446

RESUMO

Manual therapy (MT) is commonly used in rehabilitation to deal with motor impairments in Parkinson's disease (PD). However, is MT an efficient method to improve gait in PD? To answer the question, a systematic review of clinical controlled trials was conducted. Estimates of effect sizes (reported as standard mean difference (SMD)) with their respective 95% confidence interval (95% CI) were reported for each outcome when sufficient data were available. If data were lacking, p values were reported. The PEDro scale was used for the quality assessment. Three studies were included in the review. MT improved Dynamic Gait Index (SMD = 1.47; 95% CI: 0.62, 2.32; PEDro score: 5/10, moderate level of evidence). MT also improved gait performances in terms of stride length, velocity of arm movements, linear velocities of the shoulder and the hip (p < 0.05; PEDro score: 2/10, limited level of evidence). There was no significant difference between groups after MT for any joint's range of motion during gait (p > 0.05; PEDro score: 6/10, moderate level of evidence). There is no strong level of evidence supporting the beneficial effect of MT to improve gait in PD. Further randomized controlled trials are needed to understand the impact of MT on gait in PD.


Assuntos
Manipulações Musculoesqueléticas , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Marcha , Movimento , Amplitude de Movimento Articular
2.
Clin Biomech (Bristol, Avon) ; 89: 105449, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418858

RESUMO

BACKGROUND: Ankle mobility is known to be of uttermost importance to generate propulsive forces and control balance during gait initiation. Impaired mobility of the postural chain occurs with normal ageing and is exacerbated in patients with Parkinson's disease. This study questions whether short-term stretching session applied to the triceps surae improves ankle mobility and, consequently, dynamical postural control in patients with Parkinson's disease performing gait initiation. METHOD: Nineteen patients with Parkinson's disease participated in this study and were randomly assigned to an "intervention group" or a "sham group". In the intervention group, patients were exposed to a 4 × 60 seconds triceps surae stretching. In the sham group, they were exposed to forearm stretching. Additionally, ten age-matched healthy elderly, who were not exposed to any stretching-treatment, were assigned to a "control group". Participants performed series of gait initiation on a force-plate before and after their treatment. FINDINGS: Ankle mobility was improved in the intervention group after triceps surae stretching. The forward velocity of the center-of-mass at heel-off and motor performance related-parameters (progression velocity, center-of-mass velocity at foot-contact and swing phase duration) were also improved in the intervention group, with large effect sizes (d ≥ 0.8). None of the stability parameters were modified by the treatments. INTERPRETATION: Short-term triceps surae stretching is an efficient method to increase ankle mobility and improve the capacity to generate forward propulsive forces in patients with Parkinson's disease. These findings are congruent with the "posturo-kinetics capacity" theory according to which dynamical postural control depends on postural chain mobility.


Assuntos
Tornozelo , Doença de Parkinson , Idoso , Articulação do Tornozelo , Marcha , Humanos , Músculo Esquelético , Doença de Parkinson/complicações , Equilíbrio Postural
3.
F1000Res ; 9: 984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33728043

RESUMO

Background: Stretching is commonly used in physical therapy as a rehabilitation tool to improve range of motion and motor function. However, is stretching an efficient method to improve gait, and if so, for which patient category? Methods: A systematic review of randomized and non-randomized controlled trials with meta-analysis was conducted using relevant databases. Every patient category and every type of stretching programs were included without multicomponent programs. Data were meta-analysed where possible. Estimates of effect sizes (reported as standard mean difference (SMD)) with their respective 95% confidence interval (95% CI) were reported for each outcome. The PEDro scale was used for the quality assessment. Results: Twelve studies were included in the analysis. Stretching improved gait performance as assessed by walking speed and stride length only in a study with a frail elderly population, with small effect sizes (both SMD= 0.49; 95% CI: 0.03, 0.96; PEDro score: 3/10). The total distance and the continuous walking distance of the six-minute walking test were also improved only in a study in an elderly population who had symptomatic peripheral artery disease, with large effect sizes (SMD= 1.56; 95% CI: 0.66, 2.45 and SMD= 3.05; 95% CI: 1.86, 4.23, respectively; PEDro score: 5/10). The results were conflicting in healthy older adults or no benefit was found for most of the performance, spatiotemporal, kinetic and angular related variables. Only one study (PEDro score: 6/10) showed improvements in stance phase duration (SMD=-1.92; 95% CI: -3.04, -0.81), swing phase duration (SMD=1.92; 95 CI: 0.81, 3.04), double support phase duration (SMD= -1.69; 95% CI: -2.76, -0.62) and step length (SMD=1.37; 95% CI: 0.36, 2.38) with large effect sizes. Conclusions: There is no strong evidence supporting the beneficial effect of using stretching to improve gait. Further randomized controlled trials are needed to understand the impact of stretching on human gait.


Assuntos
Terapia por Exercício , Equilíbrio Postural , Idoso , Exercício Físico , Marcha , Humanos , Velocidade de Caminhada
4.
Front Neurol ; 10: 352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057474

RESUMO

Prior to gait initiation (GI), anticipatory postural adjustments (GI-APA) are activated in order to reorganize posture, favorably for gait. In healthy subjects, the center of pressure (CoP) is displaced backward during GI-APA, bilaterally by reducing soleus activities and activating the tibialis anterior (TA) muscles, and laterally in the direction of the leading leg, by activating hip abductors. In post-stroke hemiparetic patients, TA, soleus and hip abductor activities are impaired on the paretic side. Reduction in non-affected triceps surae activity can also be observed. These may result in a decreased ability to execute GI-APA and to generate propulsion forces during step execution. A systematic review was conducted to provide an overview of the reorganization which occurs in GI-APA following stroke as well as of the most effective strategies for tailoring gait-rehabilitation to these patients. Sixteen articles were included, providing gait data from a total of 220 patients. Stroke patients show a decrease in the TA activity associated with difficulties in silencing soleus muscle activity of the paretic leg, a decreased CoP shift, lower propulsive anterior forces and a longer preparatory phase. Regarding possible gait-rehabilitation strategies, the selected studies show that initiating gait with the paretic leg provides poor balance. The use of the non-paretic as the leading leg can be a useful exercise to stimulate the paretic postural muscles.

5.
Front Neurol ; 10: 1023, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616369

RESUMO

Whole-body vibration (WBV) is a training method that exposes the entire body to mechanical oscillations while standing erect or seated on a vibrating platform. This method is nowadays commonly used by clinicians to improve specific motor outcomes in various sub-populations such as elderly and young healthy adults, either sedentary or well-trained. The present study investigated the effects of acute WBV application on the balance control mechanisms during gait initiation (GI) in young healthy adults and elderly. It was hypothesized that the balance control mechanisms at play during gait initiation may compensate each other in case one or several components are perturbed following acute WBV application, so that postural stability and/or motor performance can be maintained or even improved. It is further hypothesized that this capacity of adaptation is altered with aging. Main results showed that the effects of acute WBV application on the GI postural organization depended on the age of participants. Specifically, a positive effect was observed on dynamic stability in the young adults, while no effect was observed in the elderly. An increased stance leg stiffness was also observed in the young adults only. The positive effect of WBV on dynamic stability was ascribed to an increase in the mediolateral amplitude of "anticipatory postural adjustments" following WBV application, which did overcompensate the potentially destabilizing effect of the increased stance leg stiffness. In elderly, no such anticipatory (nor corrective) postural adaptation was required since acute WBV application did not elicit any change in the stance leg stiffness. These results suggest that WBV application may be effective in improving dynamic stability but at the condition that participants are able to develop adaptive changes in balance control mechanisms, as did the young adults. Globally, these findings are thus in agreement with the hypothesis that balance control mechanisms are interdependent within the postural system, i.e., they may compensate each other in case one component (here the leg stiffness) is perturbed.

6.
Front Neurol ; 10: 627, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316447

RESUMO

Background: Whole-body vibration is commonly used in physical medicine and neuro-rehabilitation as a clinical prevention and rehabilitation tool. The goal of this systematic review is to assess the long-term effects of whole-body vibration training on gait in different populations of patients. Methods: We conducted a literature search in PubMed, Science Direct, Springer, Sage and in study references for articles published prior to 7 December 2018. We used the keywords "vibration," "gait" and "walk" in combination with their Medical Subject Headings (MeSH) terms. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was used. Only randomized controlled trials (RCT) published in English peer-reviewed journals were included. All patient categories were selected. The duration of Whole-Body Vibration (WBV) training had to be at least 4 weeks. The outcomes accepted could be clinical or biomechanical analysis. The selection procedure was conducted by two rehabilitation experts and disagreements were resolved by a third expert. Descriptive data regarding subjects, interventions, types of vibration, training parameters and main results on gait variables were collected and summarized in a descriptive table. The quality of selected studies was assessed using the PEDro scale. Statistical analysis was conducted to evaluate intergroup differences and changes after the WBV intervention compared to the pre-intervention status. The level of evidence was determined based on the results of meta-analysis (effect size), statistical heterogeneity (I 2) and methodological quality (PEDro scale). Results: A total of 859 studies were initially identified through databases with 46 articles meeting all of the inclusion criteria and thus selected for qualitative assessment. Twenty-five studies were included in meta-analysis for quantitative synthesis. In elderly subjects, small but significant improvements in the TUG test (SMD = -0.18; 95% CI: -0.32, -0.04) and the 10MWT (SMD = -0.28; 95% CI: -0.56, -0.01) were found in the WBV groups with a strong level of evidence (I 2 = 7%, p = 0.38 and I 2 = 22%, p = 0.28, respectively; PEDro scores ≥5/10). However, WBV failed to improve the 6MWT (SMD = 0.37; 95% CI: -0.03, 0.78) and the Tinetti gait scores (SMD = 0.04; 95% CI: -0.23, 0.31) in older adults. In stroke patients, significant improvement in the 6MWT (SMD = 0.33; 95% CI: 0.06, 0.59) was found after WBV interventions, with a strong level of evidence (I 2 = 0%, p = 0.58; PEDro score ≥5/10). On the other hand, there was no significant change in the TUG test despite a tendency toward improvement (SMD = -0.29; 95% CI: -0.60, 0.01). Results were inconsistent in COPD patients (I 2 = 66%, p = 0.03), leading to a conflicting level of evidence despite a significant improvement with a large effect size (SMD = 0.92; 95% CI: 0.32, 1.51) after WBV treatment. Similarly, the heterogeneous results in the TUG test (I 2 = 97%, p < 0.00001) in patients with knee osteoarthrosis make it impossible to draw a conclusion. Still, adding WBV treatment was effective in significantly improving the 6 MWT (SMD = 1.28; 95% CI: 0.57, 1.99), with a strong level of evidence (I 2 = 64%, p = 0.06; PEDro score ≥5/10). As in stroke, WBV failed to improve the results of the TUG test in multiple sclerosis patients (SMD = -0.11; 95% CI: -0.64, 0.43). Other outcomes presented moderate or even limited levels of evidence due to the lack of data in some studies or because only one RCT was identified in the review. Conclusions: WBV training can be effective for improving balance and gait speed in the elderly. The intervention is also effective in improving walking performance following stroke and in patients with knee osteoarthrosis. However, no effect was found on gait quality in the elderly or on balance in stroke and multiple sclerosis patients. The results are too heterogenous in COPD to conclude on the effect of the treatment. The results must be taken with caution due to the lack of data in some studies and the methodological heterogeneity in the interventions. Further research is needed to explore the possibility of establishing a standardized protocol targeting gait ability in a wide range of populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA