RESUMO
BACKGROUND: Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world's annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). RESULTS: ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. CONCLUSIONS: The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat-rich heterochromatic regions characterized by the presence of H3K9me2.
Assuntos
Beta vulgaris/genética , Cromatina/genética , Heterocromatina/genética , Proteínas de Plantas/genética , Beta vulgaris/metabolismo , Centrômero/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Plantas/metabolismo , Análise de Sequência de DNARESUMO
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next-generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome-wide fluorescent in situ hybridization complemented with immunostaining and super-resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44-52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.
Assuntos
Beta vulgaris/genética , Citosina/metabolismo , Metilação de DNA , DNA de Plantas/química , Cromossomos de Plantas , Epigênese Genética , Genoma de Planta , Motivos de Nucleotídeos , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNARESUMO
T-DNA insertion mutants are very valuable for reverse genetics in Arabidopsis thaliana. Several projects have generated large sequence-indexed collections of T-DNA insertion lines, of which GABI-Kat is the second largest resource worldwide. User access to the collection and its Flanking Sequence Tags (FSTs) is provided by the front end SimpleSearch (http://www.GABI-Kat.de). Several significant improvements have been implemented recently. The database now relies on the TAIRv10 genome sequence and annotation dataset. All FSTs have been newly mapped using an optimized procedure that leads to improved accuracy of insertion site predictions. A fraction of the collection with weak FST yield was re-analysed by generating new FSTs. Along with newly found predictions for older sequences about 20,000 new FSTs were included in the database. Information about groups of FSTs pointing to the same insertion site that is found in several lines but is real only in a single line are included, and many problematic FST-to-line links have been corrected using new wet-lab data. SimpleSearch currently contains data from ~71,000 lines with predicted insertions covering 62.5% of the 27,206 nuclear protein coding genes, and offers insertion allele-specific data from 9545 confirmed lines that are available from the Nottingham Arabidopsis Stock Centre.
Assuntos
Arabidopsis/genética , DNA Bacteriano , Bases de Dados de Ácidos Nucleicos , Mutagênese Insercional , Alelos , Sequência de Bases , Mapeamento Cromossômico , Internet , Dados de Sequência Molecular , Mutação , Sitios de Sequências RotuladasRESUMO
BACKGROUND: Corynebacterium ulcerans has been detected as a commensal in domestic and wild animals that may serve as reservoirs for zoonotic infections. During the last decade, the frequency and severity of human infections associated with C. ulcerans appear to be increasing in various countries. As the knowledge of genes contributing to the virulence of this bacterium was very limited, the complete genome sequences of two C. ulcerans strains detected in the metropolitan area of Rio de Janeiro were determined and characterized by comparative genomics: C. ulcerans 809 was initially isolated from an elderly woman with fatal pulmonary infection and C. ulcerans BR-AD22 was recovered from a nasal sample of an asymptomatic dog. RESULTS: The circular chromosome of C. ulcerans 809 has a total size of 2,502,095 bp and encodes 2,182 predicted proteins, whereas the genome of C. ulcerans BR-AD22 is 104,279 bp larger and comprises 2,338 protein-coding regions. The minor difference in size of the two genomes is mainly caused by additional prophage-like elements in the C. ulcerans BR-AD22 chromosome. Both genomes show a highly similar order of orthologous coding regions; and both strains share a common set of 2,076 genes, demonstrating their very close relationship. A screening for prominent virulence factors revealed the presence of phospholipase D (Pld), neuraminidase H (NanH), endoglycosidase E (EndoE), and subunits of adhesive pili of the SpaDEF type that are encoded in both C. ulcerans genomes. The rbp gene coding for a putative ribosome-binding protein with striking structural similarity to Shiga-like toxins was additionally detected in the genome of the human isolate C. ulcerans 809. CONCLUSIONS: The molecular data deduced from the complete genome sequences provides considerable knowledge of virulence factors in C. ulcerans that is increasingly recognized as an emerging pathogen. This bacterium is apparently equipped with a broad and varying set of virulence factors, including a novel type of a ribosome-binding protein. Whether the respective protein contributes to the severity of human infections (and a fatal outcome) remains to be elucidated by genetic experiments with defined bacterial mutants and host model systems.
Assuntos
Corynebacterium/genética , Genômica , Fatores de Virulência/genética , Idoso , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cães , Feminino , Ordem dos Genes , Genoma Bacteriano/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Prófagos/genética , Conformação Proteica , Fatores de Virulência/químicaRESUMO
Plant mitochondrial genomes show much more evolutionary plasticity than those of animals. We analysed the first mitochondrial DNA (mtDNA) of a lycophyte, the quillwort Isoetes engelmannii, which is separated from seed plants by more than 350 million years of evolution. The Isoetes mtDNA is particularly rich in recombination events, and chloroplast as well as nuclear DNA inserts document the incorporation of foreign sequences already in this most ancestral vascular plant lineage. On the other hand, particularly small group II introns and short intergenic regions reveal a tendency of evolution towards a compact mitochondrial genome. RNA editing reaches extreme levels exceeding 100 pyrimidine exchanges in individual mRNAs and, hitherto unobserved in such frequency, also in tRNAs with 18 C-to-U conversions in the tRNA for proline. In total, some 1500 sites of RNA editing can be expected for the Isoetes mitochondrial transcriptome. As a unique molecular novelty, the Isoetes cox1 gene requires trans-splicing via a discontinuous group I intron demonstrating disrupted, but functional, RNAs for yet another class of natural ribozymes.
Assuntos
Gleiquênias/genética , Genoma Mitocondrial , Íntrons , Edição de RNA , RNA de Transferência/química , Trans-Splicing , Sequência de Bases , DNA Mitocondrial/química , Gleiquênias/classificação , Genes Mitocondriais , Genoma de Planta , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismoRESUMO
BACKGROUND: Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans) continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1) was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. RESULTS: Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. CONCLUSIONS: The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in the vaginal environment. The location of the corresponding genes on plasmid pET44827 explains why black-pigmented (formerly C. nigricans) and non-pigmented C. aurimucosum strains were isolated from clinical specimens.
Assuntos
Corynebacterium/genética , Genoma Bacteriano , Vagina/microbiologia , Aborto Espontâneo , Adulto , Biologia Computacional , Corynebacterium/crescimento & desenvolvimento , Infecções por Corynebacterium/microbiologia , DNA Bacteriano/genética , Feminino , Genes Bacterianos , Humanos , Família Multigênica , Gravidez , Análise de Sequência de DNARESUMO
Insertional mutagenesis approaches, especially by T-DNA, play important roles in gene function studies of the model plant Arabidopsis thaliana. GABI-Kat SimpleSearch (http://www.GABI-Kat.de) is a Flanking Sequence Tag (FST)-based database for T-DNA insertion mutants generated by the GABI-Kat project. Currently, the database contains >108,000 mapped FSTs from approximately 64,000 lines which cover 64% of all annotated A.thaliana protein-coding genes. The web interface allows searching for relevant insertions by gene code, keyword, line identifier, GenBank accession number of the FST, and also by BLAST. A graphic display of the genome region around the gene or the FST assists users to select insertion lines of their interests. About 3500 insertions were confirmed in the offspring of the plant from which the original FST was generated, and the seeds of these lines are available from the Nottingham Arabidopsis Stock Centre. The database now also contains additional information such as segregation data, gene-specific primers and confirmation sequences. This information not only helps users to evaluate the usefulness of the mutant lines, but also covers a big part of the molecular characterization of the insertion alleles.
Assuntos
Arabidopsis/genética , DNA Bacteriano/análise , Bases de Dados de Ácidos Nucleicos , Mutagênese Insercional , Sitios de Sequências Rotuladas , Internet , Interface Usuário-ComputadorRESUMO
Corynebacterium kroppenstedtii is a lipophilic corynebacterial species that lacks in the cell envelope the characteristic alpha-alkyl-beta-hydroxy long-chain fatty acids, designated mycolic acids. We report here the bioinformatic analysis of genome data obtained by pyrosequencing of the type strain C. kroppenstedtii DSM44385 that was initially isolated from human sputum. A single run with the Genome Sequencer FLX system revealed 560,248 shotgun reads with 110,018,974 detected bases that were assembled into a contiguous genomic sequence with a total size of 2,446,804bp. Automatic annotation of the complete genome sequence resulted in the prediction of 2122 coding sequences, of which 29% were considered as specific for C. kroppenstedtii when compared with predicted proteins from hitherto sequenced pathogenic corynebacteria. This comparative content analysis of the genome data revealed a large repertoire of genes involved in sugar uptake and central carbohydrate metabolism and the presence of the mevalonate route for isoprenoid biosynthesis. The lack of mycolic acids and the lipophilic lifestyle of C. kroppenstedtii are apparently caused by gene loss, including a condensase gene cluster, a mycolate reductase gene, and a microbial type I fatty acid synthase gene. A complete beta-oxidation pathway involved in the degradation of fatty acids is present in the genome. Evaluation of the genomic data indicated that lipophilism is the dominant feature involved in pathogenicity of C. kroppenstedtii.
Assuntos
Proteínas de Bactérias/genética , Corynebacterium/fisiologia , Genoma Bacteriano/genética , Ácidos Micólicos/metabolismo , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Mapeamento Cromossômico/métodos , Dados de Sequência MolecularRESUMO
Corynebacterium urealyticum is a lipid-requiring, urealytic bacterium of the human skin flora that has been recognized as causative agent of urinary tract infections. We report the analysis of the complete genome sequence of C. urealyticum DSM7109, which was initially recovered from a patient with alkaline-encrusted cystitis. The genome sequence was determined by a combination of pyrosequencing and Sanger technology. The chromosome of C. urealyticum DSM7109 has a size of 2,369,219bp and contains 2024 predicted coding sequences, of which 78% were considered as orthologous with genes in the Corynebacterium jeikeium K411 genome. Metabolic analysis of the lipid-requiring phenotype revealed the absence of a fatty acid synthase gene and the presence of a beta-oxidation pathway along with a large repertoire of auxillary genes for the degradation of exogenous fatty acids. A urease locus with the gene order ureABCEFGD may play a pivotal role in virulence of C. urealyticum by the alkalinization of human urine and the formation of struvite stones. Multidrug resistance of C. urealyticum DSM7109 is mediated by transposable elements, conferring resistances to macrolides, lincosamides, ketolides, aminoglycosides, chloramphenicol, and tetracycline. The complete genome sequence of C. urealyticum revealed a detailed picture of the lifestyle of this opportunistic human pathogen.
Assuntos
Proteínas de Bactérias/genética , Mapeamento Cromossômico/métodos , Corynebacterium/genética , Genoma Bacteriano/genética , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Dados de Sequência MolecularRESUMO
Transformation by Agrobacterium tumefaciens, an important tool in modern plant research, involves the integration of T-DNA initially present on a plasmid in agrobacteria into the genome of plant cells. The process of attachment of the agrobacteria to plant cells and the transport of T-DNA into the cell and further to the nucleus has been well described. However, the exact mechanism of integration into the host's DNA is still unclear, although several models have been proposed. During confirmation of T-DNA insertion alleles from the GABI-Kat collection of Arabidopsis thaliana mutants, we have generated about 34,000 sequences from the junctions between inserted T-DNA and adjacent genome regions. Here, we describe the evaluation of this dataset with regard to existing models for T-DNA integration. The results suggest that integration into the plant genome is mainly mediated by the endogenous plant DNA repair machinery. The observed integration events showed characteristics highly similar to those of repair sites of double-strand breaks with respect to microhomology and deletion sizes. In addition, we describe unexpected integration events, such as large deletions and inversions at the integration site that are relevant for correct interpretation of results from T-DNA insertion mutants in reverse genetics experiments.
Assuntos
Agrobacterium tumefaciens/genética , Arabidopsis/genética , Reparo do DNA , DNA Bacteriano/genética , DNA de Plantas , Arabidopsis/microbiologia , Quebras de DNA de Cadeia Dupla , Deleção de Sequência , Inversão de SequênciaRESUMO
A pipeline has been created for the characterization of Arabidopsis thaliana mutants by generating flanking sequence tags (FSTs) and optimized for economic, high-throughput production. The GABI-Kat collection of T-DNA mutagenized A. thaliana plants was used as a source of independent transgenic lines. The pipeline included robotized extraction of genomic DNA in a 96-well format, an adapter-ligation PCR method for amplification of plant sequences adjacent to T-DNA borders, automated purification and sequencing of PCR products, and computational trimming of the resulting sequence files. Data quality was significantly improved by (i) restriction digestion of the adaptor-ligation products to reduce trivial sequences caused by co-amplification of fragments derived from the free plasmid, and (ii) the design of the adaptor primers for the second amplification step to enhance selective generation of single PCR fragments, even from lines with multiple T-DNA insertions. Gel-purification was avoided by including these steps, the number of amplification reactions per line was reduced from four to three, and the percentage of lines that yielded at least one FST was increased from 66% to 86%. More than 58,000 FSTs have been submitted to GenBank and are available at http://www.mpiz-koeln.mpg.de/GABI-Kat/.
Assuntos
Arabidopsis/genética , DNA Bacteriano/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Robótica/métodos , Análise de Sequência de DNA/métodos , Genoma de Planta , Mutagênese Sítio-Dirigida/genética , Plantas Geneticamente Modificadas/genética , Sequências Repetidas Terminais/genéticaRESUMO
Pseudomonas aeruginosa is a frequent human pathogen that increasingly causes chronic infections of nonhealing wounds. Here we present the 6.8 Mb draft genome of strain WS394, a multidrug-resistant chronic ulcer isolate that exhibited outstanding high cell cytotoxicity despite defective secretion of exotoxin U, suggesting a habitat-dependent adaptation process.
RESUMO
Corynebacterium jeikeium is a "lipophilic" and multidrug-resistant bacterial species of the human skin flora that has been recognized with increasing frequency as a serious nosocomial pathogen. Here we report the genome sequence of the clinical isolate C. jeikeium K411, which was initially recovered from the axilla of a bone marrow transplant patient. The genome of C. jeikeium K411 consists of a circular chromosome of 2,462,499 bp and the 14,323-bp bacteriocin-producing plasmid pKW4. The chromosome of C. jeikeium K411 contains 2,104 predicted coding sequences, 52% of which were considered to be orthologous with genes in the Corynebacterium glutamicum, Corynebacterium efficiens, and Corynebacterium diphtheriae genomes. These genes apparently represent the chromosomal backbone that is conserved between the four corynebacteria. Among the genes that lack an ortholog in the known corynebacterial genomes, many are located close to transposable elements or revealed an atypical G+C content, indicating that horizontal gene transfer played an important role in the acquisition of genes involved in iron and manganese homeostasis, in multidrug resistance, in bacterium-host interaction, and in virulence. Metabolic analyses of the genome sequence indicated that the "lipophilic" phenotype of C. jeikeium most likely originates from the absence of fatty acid synthase and thus represents a fatty acid auxotrophy. Accordingly, both the complete gene repertoire and the deduced lifestyle of C. jeikeium K411 largely reflect the strict dependence of growth on the presence of exogenous fatty acids. The predicted virulence factors of C. jeikeium K411 are apparently involved in ensuring the availability of exogenous fatty acids by damaging the host tissue.
Assuntos
Antibacterianos/farmacologia , Genoma Bacteriano , Metabolismo dos Lipídeos , Composição de Bases , Corynebacterium/efeitos dos fármacos , Corynebacterium/genética , Corynebacterium/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Dados de Sequência Molecular , Pele/microbiologiaRESUMO
SUMMARY: GABI-Kat SimpleSearch is a database of flanking sequence tags (FSTs) of T-DNA mutagenized Arabidopsis thaliana lines that were generated by the GABI-Kat project. Sequences flanking the T-DNA insertion sites were aligned to the A.thaliana genome sequence, annotated with information about the FST, the insertion site and the line from which the FST was derived. A web interface permits text-based as well as sequence-based searches for relevant insertions. GABI-Kat SimpleSearch aims to help biologists to quickly find T-DNA insertion mutants for their research. AVAILABILITY: http://www.mpiz-koeln.mpg.de/GABI-Kat/