RESUMO
In the course of a programme aimed at identifying Nurr1/NOT agonists for potential treatment of Parkinson's disease, a few hits from high throughput screening were identified and characterized. A combined optimization pointed to a very narrow and stringent structure activity relationship. A comprehensive program of optimization led to a potent and safe candidate drug displaying neuroprotective and anti-inflammatory activity in several in vitro and in vivo models.
Assuntos
Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson/tratamento farmacológico , Animais , Linhagem Celular , Cricetinae , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Ratos , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismoRESUMO
E-prostanoid receptor subtype 2 (EP2) agonists are currently under clinical development as hypotensive agents for the treatment of ocular hypertension. However, the effects of EP2 receptor agonists on trabecular meshwork (TM) alterations leading to primary open-angle glaucoma (POAG) are still unknown. Here, we evaluated whether EP2 receptor activation exhibits protective functions on TM cell death induced by endoplasmic reticulum (ER) stress. We show that the EP2 receptor agonist butaprost protects TM cell death mediated by the ER stress inducer tunicamycin through a cyclic AMP (cAMP)-dependent mechanism, but independent of the classical cAMP sensors, protein kinase A and exchange proteins activated by cAMP. The ER stress-induced intrinsic apoptosis inhibited by the EP2 receptor agonist was correlated with a decreased accumulation of the cellular stress sensor p53. In addition, p53 down-regulation was associated with inhibition of its transcriptional activity, which led to decreased expression of the pro-apoptotic p53-upregulated modulator of apoptosis (PUMA). The stabilization of p53 by nutlin-3a abolished butaprost-mediated cell death protection. In conclusion, we showed that EP2 receptor activation protects against ER stress-dependent mitochondrial apoptosis through down-regulation of p53. The specific inhibition of this pathway could reduce TM alterations observed in POAG patients.
Assuntos
Apoptose , Citoproteção , Regulação para Baixo , Estresse do Retículo Endoplasmático , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Transdução de Sinais , Malha Trabecular/patologia , Proteína Supressora de Tumor p53/metabolismo , Adulto , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocromos c/metabolismo , Citoproteção/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
The use of colloidal silica nanoparticles and sub-microparticles (SiPs) have been considered a very interesting strategy for drug delivery applications. In the present study, we have focused our attention on the suitability of these nanomaterials as potential carriers for dermal drug delivery, thus studying their toxicological profile in vitro, cellular uptake and intracellular localization in both human keratinocytes (K17) and human dermal fibroblasts (HDF) as a function of their particle size (SiPs of 20, 70, 200 and 500 nm). Full characterization of these aspects enabled us to observe a strong cell-type dependency in terms of cytotoxicity and cell internalization, whereas particle size was only relevant for ultra-small SiPs (20 nm), being the most toxic SiPs. For 70, 200 and 500 nm SiPs, the differences in uptake and intracellular trafficking determined the different toxicological profiles in K17 and HDF. In addition, these characteristics can further define different drug delivery strategies. Hence, phagocytosis has been identified as the main internalization mechanism for K17, and caveolae-mediated endocytosis for HDF. This relevant information led us to conclude that fibroblasts would be optimal targets for delivering delicate therapeutic molecules such as proteins or genetic material using SiPs while maintaining a low toxicity profile, whereas keratinocytes could enable accelerated drug release therapies based on SiPs.
Assuntos
Endocitose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Fagocitose/efeitos dos fármacos , Dióxido de Silício/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Coloides , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Propriedades de SuperfícieRESUMO
Background and Aims: To better understand nonalcoholic steatohepatitis (NASH) disease progression and to evaluate drug targets and compound activity, we undertook the development of an in vitro 3D model to mimic liver architecture and the NASH environment. Methods: We have developed an in vitro preclinical 3D NASH model by coculturing primary human hepatocytes, human stellate cells, liver endothelial cells and Kupffer cells embedded in a hydrogel of rat collagen on a 96-well plate. A NASH-like environment was induced by addition of medium containing free fatty acids and tumor necrosis factor-α. This model was then characterized by biochemical, imaging and transcriptomics analyses. Results: We succeeded in defining suitable culture conditions to maintain the 3D coculture for up to 10 days in vitro, with the lowest level of steatosis and reproducible low level of inflammation and fibrosis. NASH disease was induced with a custom medium mimicking NASH features. The cell model exhibited the key NASH disease phenotypes of hepatocyte injury, steatosis, inflammation, and fibrosis. Hepatocyte injury was highlighted by a decrease of CYP3A4 expression and activity, without loss of viability up to day 10. Moreover, the model was able to stimulate a stable inflammatory and early fibrotic environment, with expression and secretion of several cytokines. A global gene expression analysis confirmed the NASH induction. Conclusions: This is a new in vitro model of NASH disease consisting of four human primary cell-types that exhibits most features of the disease. The 10-day cell viability and cost effectiveness of the model make it suitable for medium throughput drug screening and provide attractive avenues to better understand disease physiology and to identify and characterize new drug targets.
RESUMO
This article describes the chemical synthesis, ADME and pharmacological properties and early safety pharmacology evaluation of a series of novel Nurr1/NOT agonist. It is meant as a support to an article recently published in Bioorganic and Medicinal chemistry Letters and entitled "Development of a novel NURR1/NOT agonist from hit to lead and candidate for the potential treatment of Parkinson's disease" [1] and presenting the discovery, scope and potential of these new ligands of these nuclear receptors.
RESUMO
On native human, rat and mouse glycine transporter-1(GlyT1), SSR130800 behaves as a selective inhibitor with IC50 values of 1.9, 5.3 and 6.8 nM, respectively. It reversibly blocked glycine uptake in mouse brain cortical homogenates, increased extracellular levels of glycine in the rat prefrontal cortex, and potentiated NMDA-mediated excitatory postsynaptic currents in rat hippocampal slices. SSR103800 (30 mg/kg, p.o.) decreased MK-801- and PCP-induced locomotor hyperactivity in rodents. SSR103800 (1 and 10 mg/kg, p.o.) attenuated social recognition deficit in adult rats induced by neonatal injections of PCP (10 mg/kg, s.c., on post-natal day 7, 9 and 11). SSR103800 (3 mg/kg, p.o.) counteracted the deficit in short-term visual episodic-like memory induced by a low challenge dose of PCP (1 mg/kg, i.p.), in PCP-sensitized rats (10 mg/kg, i.p.). SSR103800 (30 mg/kg, i.p.) increased the prepulse inhibition of the startle reflex in DBA/1J mice. SSR103800 decreased defensive- and despair-related behaviors in the tonic immobility test in gerbils (10 and 30 mg/kg, p.o.) and in the forced-swimming procedure in rats (1 and 3 mg/kg, p.o.), respectively. These findings suggest that SSR103800 may have a therapeutic potential in the management of the core symptoms of schizophrenia and comorbid depression states.
Assuntos
Antipsicóticos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Esquizofrenia/tratamento farmacológico , Animais , Antidepressivos/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Gerbillinae , Glicina/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , N-Metilaspartato/fisiologia , Fenciclidina/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Estereoisomerismo , Natação/psicologiaRESUMO
In this paper, we report on the pharmacological and functional profile of SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic acid, 4-bromophenyl ester), a new selective alpha7 acetylcholine nicotinic receptor (n-AChRs) partial agonist. SSR180711 displays high affinity for rat and human alpha7 n-AChRs (K(i) of 22+/-4 and 14+/-1 nM, respectively). Ex vivo (3)[H]alpha-bungarotoxin binding experiments demonstrate that SSR180711 rapidly penetrates into the brain (ID(50)=8 mg/kg p.o.). In functional studies performed with human alpha7 n-AChRs expressed in Xenopus oocytes or GH4C1 cells, the compound shows partial agonist effects (intrinsic activity=51 and 36%, EC(50)=4.4 and 0.9 microM, respectively). In rat cultured hippocampal neurons, SSR180711 induced large GABA-mediated inhibitory postsynaptic currents and small alpha-bungarotoxin sensitive currents through the activation of presynaptic and somato-dendritic alpha7 n-AChRs, respectively. In mouse hippocampal slices, the compound increased the amplitude of both glutamatergic (EPSCs) and GABAergic (IPSCs) postsynaptic currents evoked in CA1 pyramidal cells. In rat and mouse hippocampal slices, a concentration of 0.3 muM of SSR180711 increased long-term potentiation (LTP) in the CA1 field. Null mutation of the alpha7 n-AChR gene totally abolished SSR180711-induced modulation of EPSCs, IPSCs and LTP in mice. Intravenous administration of SSR180711 strongly increased the firing rate of single ventral pallidum neurons, extracellularly recorded in anesthetized rats. In microdialysis experiments, administration of the compound (3-10 mg/kg i.p.) dose-dependently increased extracellular acetylcholine (ACh) levels in the hippocampus and prefrontal cortex of freely moving rats. Together, these results demonstrate that SSR180711 is a selective and partial agonist at human, rat and mouse alpha7 n-AChRs, increasing glutamatergic neurotransmission, ACh release and LTP in the hippocampus.
Assuntos
Agonistas Nicotínicos/farmacologia , Agonistas Nicotínicos/farmacocinética , Receptores Nicotínicos/fisiologia , Animais , Animais Recém-Nascidos , Sítios de Ligação/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Hipocampo/citologia , Humanos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Agonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Oócitos/fisiologia , Técnicas de Patch-Clamp/métodos , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/deficiência , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Receptor Nicotínico de Acetilcolina alfa7 , Ácido gama-Aminobutírico/farmacologiaRESUMO
PURPOSE: Prostaglandin F2α analogues are the first-line medication for the treatment of ocular hypertension (OHT), and prostanoid EP2 receptor agonists are under clinical development for this indication. The goal of this study was to investigate the effects of F prostanoid (FP) and EP2 receptor activation on the myofibroblast transition of primary trabecular meshwork (TM) cells, which could be a causal mechanism of TM dysfunction in glaucoma. METHODS: Human primary TM cells were treated with either latanoprost or butaprost and TGF-ß2. Trabecular meshwork contraction was measured in a three-dimensional (3D) TM cell-populated collagen gel (CPCG) model. Expression of α-smooth muscle actin (α-SMA) and phosphorylation of myosin light chain (MLC) were determined by Western blot. Assembly of actin stress fibers and collagen deposition were evaluated by immunocytochemistry. Involvement of p38, extracellular signal-regulated kinase (ERK), and Rho-associated kinase (ROCK) pathways as well as matrix metalloproteinase activation was tested with specific inhibitors. RESULTS: In one source of validated adult TM cells, latanoprost induced cell contraction as observed by CPCG surface reduction and increased actin polymerization, α-SMA expression, and MLC phosphorylation, whereas butaprost inhibited TGF-ß2-induced CPCG contraction, actin polymerization, and MLC phosphorylation. Both agonists inhibited TGF-ß2-dependent collagen deposition. The latanoprost effects were mediated by p38 pathway. CONCLUSIONS: Latanoprost decreased TM collagen accumulation but promoted a contractile phenotype in a source of adult TM cells that could modulate the conventional outflow pathway. In contrast, butaprost attenuated both TM contraction and collagen deposition induced by TGF-ß2, thereby inhibiting myofibroblast transition of TM cells. These results open new perspectives for the management of OHT.
Assuntos
Glaucoma/tratamento farmacológico , Miofibroblastos/metabolismo , Prostaglandinas F Sintéticas/farmacologia , RNA/genética , Receptores de Prostaglandina E Subtipo EP2/efeitos dos fármacos , Receptores de Prostaglandina/efeitos dos fármacos , Malha Trabecular/metabolismo , Actinas/biossíntese , Actinas/genética , Adulto , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Western Blotting , Sobrevivência Celular , Células Cultivadas , Dinoprosta , Glaucoma/genética , Glaucoma/metabolismo , Humanos , Imuno-Histoquímica , Latanoprosta , Masculino , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Cadeias Leves de Miosina/metabolismo , Fármacos Neuroprotetores , Prostaglandinas E Sintéticas , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologiaRESUMO
Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca2+ mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1neo-/- mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.
Assuntos
Atenção/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Indanos/farmacologia , Memória/efeitos dos fármacos , Oxazóis/farmacologia , Pirimidinas/farmacologia , Receptores de AMPA/química , Esquizofrenia/tratamento farmacológico , Sítio Alostérico , Anfetaminas/farmacologia , Animais , Cálcio/metabolismo , Córtex Cerebral/metabolismo , AMP Cíclico/metabolismo , Maleato de Dizocilpina/química , Maleato de Dizocilpina/farmacologia , Eletroconvulsoterapia , Células HEK293 , Humanos , Indanos/uso terapêutico , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxazóis/uso terapêutico , Fenótipo , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-DawleyRESUMO
Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 microM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.
Assuntos
Benzamidas/farmacologia , Química Encefálica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Piperidinas/farmacologia , Acetilcolina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Anfetamina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Isótopos de Carbono/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Ritmo Circadiano/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/química , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Glicina/metabolismo , Hipocampo/citologia , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacosRESUMO
The biochemical and pharmacological properties of a novel antagonist of the tachykinin neurokinin 1 (NK1) receptor, SSR240600 [(R)-2-(1-[2-[4-[2-[3,5-bis(trifluoromethyl)phenyl]acetyl]-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl]-4-piperidinyl)-2-methylpropanamide], were evaluated. SSR240600 inhibited the binding of radioactive substance P to tachykinin NK1 receptors in human lymphoblastic IM9 cells (K(i) = 0.0061 nM), human astrocytoma U373MG cells (K(i) = 0.10 nM), and human brain cortex (IC50 = 0.017 nM). It also showed subnanomolar affinity for guinea pig NK1 receptors but was less potent on rat and gerbil NK1 receptors. SSR240600 inhibited [Sar(9),Met(O2)(11)]substance P-induced inositol monophosphate formation in human astrocytoma U373MG cells with an IC50 value of 0.66 nM (agonist concentration of 100 nM). It also antagonized substance P-induced contractions of isolated human small bronchi with a pIC50 value of 8.6 (agonist concentration of 100 nM). The compound was >100- to 1000-fold more selective for tachykinin NK1 receptors versus tachykinin NK2 or NK3 receptors as evaluated in binding and in vitro functional assays. In vivo antagonistic activity of SSR240600 was demonstrated on tachykinin NK1 receptor-mediated hypotension in dogs (3 and 10 microg/kg i.v.), microvascular leakage (1 and 3 mg/kg i.p.), and bronchoconstriction (50 and 100 microg/kg i.v.) in guinea pigs. It also prevented citric acid-induced cough in guinea pigs (1-10 mg/kg i.p.), an animal model in which central endogenous tachykinins are suspected to play a major role. In conclusion, SSR240600 is a new, potent, and centrally active antagonist of the tachykinin NK1 receptor, able to antagonize various NK1 receptor-mediated pharmacological effects in the periphery and in the central nervous system.