RESUMO
Myeloproliferative neoplasms (MPNs) are hematologic malignancies characterized by gene mutations that promote myeloproliferation and resistance to apoptosis via constitutively active signaling pathways, with Janus kinase 2-signal transducers and the activators of transcription (JAK-STAT) axis as a core part. Chronic inflammation has been described as a pivot for the development and advancement of MPNs from early stage cancer to pronounced bone marrow fibrosis, but there are still unresolved questions regarding this issue. The MPN neutrophils are characterized by upregulation of JAK target genes, they are in a state of activation and with deregulated apoptotic machinery. Deregulated neutrophil apoptotic cell death supports inflammation and steers them towards secondary necrosis or neutrophil extracellular trap (NET) formation, a trigger of inflammation both ways. NETs in proinflammatory bone marrow microenvironment induce hematopoietic precursor proliferation, which has an impact on hematopoietic disorders. In MPNs, neutrophils are primed for NET formation, and even though it seems obvious for NETs to intervene in the disease progression by supporting inflammation, no reliable data are available. We discuss in this review the potential pathophysiological relevance of NET formation in MPNs, with the intention of contributing to a better understanding of how neutrophils and neutrophil clonality can orchestrate the evolution of a pathological microenvironment in MPNs.
Assuntos
Armadilhas Extracelulares , Neoplasias Hematológicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Armadilhas Extracelulares/metabolismo , Transtornos Mieloproliferativos/genética , Medula Óssea/metabolismo , Neoplasias Hematológicas/patologia , Neutrófilos/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismo , Microambiente TumoralRESUMO
Psychological stress is a significant contributor to various chronic diseases and affects multiple physiological processes including erythropoiesis. This study aimed to examine the tissue-specific contributions of macrophages and extracellular ATP, as a signal of disturbed tissue homeostasis, to erythropoiesis under conditions of repeated psychological stress. Adult male BALB/c mice were subjected to 2 h daily restraint stress for seven consecutive days. Clodronate-liposomes were used to deplete resident macrophages from the bone marrow and spleen two days prior to the first restraint procedure, as well as newly recruited macrophages, every third day for the duration of the experiment. Repeated stress induced a considerable increase in the number of erythroid progenitor cells as well as in the percentage of CD71+/Ter119+ and CD71-/Ter119+ cells in the bone marrow and spleen. Macrophage depletion completely abolished the stimulative effect of repeated stress on immature erythroid cells, and prevented stress-induced increases in ATP levels, P2X7 receptor (P2X7R) expression, and ectonucleotidase CD39 activity and expression in the bone marrow and spleen. The obtained results demonstrate the stimulative effects of repeated stress on erythroid cells, extracellular ATP levels, P2X7R expression, CD39 activity and expression within the bone marrow and spleen, as well as the essential role of macrophages in stress-induced changes.
Assuntos
Eritropoese , Macrófagos , Camundongos , Animais , Masculino , Macrófagos/metabolismo , Baço/metabolismo , Camundongos Endogâmicos BALB C , Estresse Psicológico , Trifosfato de Adenosina/metabolismoRESUMO
Anaemia occurs frequently in patients with heart failure and its current treatment lacks clear targets. Emerging evidence suggests that erythroid progenitor cell expansion is an integral part of physiological response to anaemia associated with chronic stress. Understanding the underlying mechanism may provide a novel approach to anaemia management. In this study, we aimed to examine a role for nitric oxide (NO) in the regulation of bone marrow erythroid progenitor response to chronic stress. For this purpose, adult male mice were subjected to 2 h daily restraint stress for 7 or 14 consecutive days. The role of NO was assessed by subcutaneous injection with NG-nitro-L-arginine methyl ester, 30 min prior to each restraint. Chronic exposure to stress resulted in significantly increased number of bone marrow erythroid progenitors, and blockade of NO biosynthesis prior to daily stress completely prevented stress-induced erythroid progenitor cell expansion. Furthermore, chronic stress exposure led to altered expression of neural, endothelial and inducible nitric oxide synthases (NOS) in the bone marrow, both on mRNA and protein level. Decreased expression of neural and endothelial NOS, as well as reduced expression of NF-kappaB/p65 in bone marrow nuclear cell fraction, was accompanied by elevated bone marrow expression of inducible NOS in chronically stressed animals. This is the first study to demonstrate a role for NO in adaptive response of erythroid progenitors to chronic stress. Targeting NO production may be beneficial to improve bone marrow dysfunction and reduced erythroid progenitor cell expansion in chronic heart failure patients.
Assuntos
Modelos Animais de Doenças , Células Precursoras Eritroides/metabolismo , Óxido Nítrico/biossíntese , Estresse Psicológico/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos CBA , Óxido Nítrico Sintase Tipo II/metabolismoRESUMO
Macrophage migration inhibitory factor is a well-known proinflammatory cytokine that is released during systemic stress response. Although MIF can affect erythrocyte production, the role of this cytokine in stress-induced erythropoiesis is completely unknown. To extend our previous findings showing that chronic psychological stress stimulates extramedullary erythropoiesis, here we examined whether MIF is involved in the control of stress-induced erythropoietic response. Adult male C57BL/6 wild-type (WT) and MIF-KO (knock-out) mice were subjected to 2-h daily restraint stress for either 7 or 14 consecutive days. The number of erythroid progenitors and CD71/Ter119 profile of erythroid precursors were analyzed in the bone marrow and spleen. Additionally, MIF protein expression was assessed in WT mice. Our results demonstrated that chronic restraint stress enhanced the number of both erythroid progenitors and precursors in the spleen. Stress-induced increase in the number of splenic late erythroid progenitors as well as in the percentage of CD71(+)Ter119(+)-double-positive precursors was significantly more pronounced in MIF-KO mice compared to WT animals. Furthermore, repeatedly stressed WT animals demonstrated an augmented MIF expression in the spleen. Unlike the spleen, the bone marrow of chronically stressed WT mice exhibited less prominent changes in erythropoietic stress response and no significant alteration in MIF expression. In addition, MIF deficiency did not influence the bone marrow erythropoiesis in stressed animals. These findings suggest that MIF regulates extramedullary erythropoiesis by inhibiting an overexpansion of splenic immature erythroid cells during chronic stress and indicate a novel role for this cytokine under chronic stress conditions.
Assuntos
Células Eritroides/citologia , Células Eritroides/metabolismo , Eritropoese , Fatores Inibidores da Migração de Macrófagos/metabolismo , Estresse Fisiológico , Animais , Fatores Inibidores da Migração de Macrófagos/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Stress is an integral part of life. While acute responses to stress are generally regarded as beneficial in dealing with immediate threats, chronic exposure to threatening stimuli exerts deleterious effects and can be either a contributing or an aggravating factor for many chronic diseases including cancer. Chronic psychological stress has been identified as a significant factor contributing to the development and progression of cancer, but the mechanisms that link chronic stress to cancer remain incompletely understood. Psychological stressors initiate multiple physiological responses that result in the activation of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic nervous system, and the subsequent changes in immune function. Chronic stress exposure disrupts the homeostatic communication between the neuroendocrine and immune systems, shifting immune signaling toward a proinflammatory state. Stress-induced chronic low-grade inflammation and a decline in immune surveillance are both implicated in cancer development and progression. Conversely, tumor-induced inflammatory cytokines, apart from driving a tumor-supportive inflammatory microenvironment, can also exert their biological actions distantly via circulation and therefore adversely affect the stress response. In this minireview, we summarize the current findings on the relationship between stress and cancer, focusing on the role of inflammation in stress-induced neuroendocrine-immune crosstalk. We also discuss the underlying mechanisms and their potential for cancer treatment and prevention.
RESUMO
Cancer-related anemia (CRA) is a common multifactorial disorder that adversely affects the quality of life and overall prognosis in patients with cancer. Safety concerns associated with the most common CRA treatment options, including intravenous iron therapy and erythropoietic-stimulating agents, have often resulted in no or suboptimal anemia management for many cancer patients. Chronic anemia creates a vital need to restore normal erythropoietic output and therefore activates the mechanisms of stress erythropoiesis (SE). A growing body of evidence demonstrates that bone morphogenetic protein 4 (BMP4) signaling, along with glucocorticoids, erythropoietin, stem cell factor, growth differentiation factor 15 (GDF15) and hypoxia-inducible factors, plays a pivotal role in SE. Nevertheless, a chronic state of SE may lead to ineffective erythropoiesis, characterized by the expansion of erythroid progenitor pool, that largely fails to differentiate and give rise to mature red blood cells, further aggravating CRA. In this review, we summarize the current state of knowledge on the emerging roles for stress erythroid progenitors and activated SE pathways in tumor progression, highlighting the urgent need to suppress ineffective erythropoiesis in cancer patients and develop an optimal treatment strategy as well as a personalized approach to CRA management.
RESUMO
Adipose tissue (AT) forms depots at different anatomical locations throughout the body, being in subcutaneous and visceral regions, as well as the bone marrow. These ATs differ in the adipocyte functional profile, their insulin sensitivity, adipokines' production, lipolysis, and response to pathologic conditions. Despite the recent advances in lineage tracing, which have demonstrated that individual adipose depots are composed of adipocytes derived from distinct progenitor populations, the cellular and molecular dissection of the adipose clonogenic stem cell niche is still a great challenge. Additional complexity in AT regulation is associated with tumor-induced changes that affect adipocyte phenotype. As an integrative unit of cell differentiation, AT microenvironment regulates various phenotype outcomes of differentiating adipogenic lineages, which consequently may contribute to the neoplastic phenotype manifestations. Particularly interesting is the capacity of AT to impose and support the aberrant potency of stem cells that accompanies tumor development. In this review, we summarize the current findings on the communication between adipocytes and their progenitors with tumor cells, pointing out to the co-existence of healthy and neoplastic stem cell niches developed during tumor evolution. We also discuss tumor-induced adaptations in mature adipocytes and the involvement of alternative differentiation programs.