Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 38(5): 1137-1150, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29255006

RESUMO

Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively explored as promising targets for ameliorating cognitive deficits in Alzheimer's disease. We hypothesized that cholinergic stimulation of PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. We iontophoretically applied the general cholinergic receptor agonist carbachol onto neurons in dorsolateral PFC (DLPFC) of male rhesus macaques performing rule-guided prosaccades and antisaccades, a well established oculomotor task for testing cognitive control. Carbachol application had heterogeneous effects on neuronal excitability, with both excitation and suppression observed in significant proportions. Contrary to our prediction, neurons with rule-selective activity exhibited a reduction in selectivity during carbachol application. Cholinergic stimulation disrupted rule selectivity regardless of whether it had suppressive or excitatory effects on these neurons. In addition, cholinergic stimulation excited putative pyramidal neurons, whereas the activity of putative interneurons remained unchanged. Moreover, cholinergic stimulation attenuated saccade direction selectivity in putative pyramidal neurons due to nonspecific increases in activity. Our results suggest excessive cholinergic stimulation has detrimental effects on DLPFC representations of task attributes. These findings delineate the complexity and heterogeneity of neuromodulation of cerebral cortex by cholinergic stimulation, an area of active exploration with respect to the development of cognitive enhancers.SIGNIFICANCE STATEMENT The neurotransmitter acetylcholine is known to be important for cognitive processes in the prefrontal cortex. Removal of acetylcholine from prefrontal cortex can disrupt short-term memory performance and is reminiscent of Alzheimer's disease, which is characterized by degeneration of acetylcholine-producing neurons. Stimulation of cholinergic receptors is being explored to create cognitive enhancers for the treatment of Alzheimer's disease and other psychiatric diseases. Here, we stimulated cholinergic receptors in prefrontal cortex and examined its effects on neurons that are engaged in cognitive behavior. Surprisingly, cholinergic stimulation decreased neurons' ability to discriminate between rules. This work suggests that overstimulation of acetylcholine receptors could disrupt neuronal processing during cognition and is relevant to the design of cognitive enhancers based on stimulating the cholinergic system.


Assuntos
Sistema Nervoso Parassimpático/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Algoritmos , Animais , Carbacol/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Cognição/efeitos dos fármacos , Movimentos Oculares/efeitos dos fármacos , Macaca mulatta , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Nootrópicos/farmacologia , Parassimpatomiméticos/farmacologia , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , Movimentos Sacádicos/efeitos dos fármacos
2.
J Neurosci ; 35(49): 16064-76, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26658860

RESUMO

Maintenance of context is necessary for execution of appropriate responses to diverse environmental stimuli. The dorsolateral prefrontal cortex (DLPFC) plays a pivotal role in executive function, including working memory and representation of abstract rules. DLPFC activity is modulated by the ascending cholinergic system through nicotinic and muscarinic receptors. Although muscarinic receptors have been implicated in executive performance and gating of synaptic signals, their effect on local primate DLPFC neuronal activity in vivo during cognitive tasks remains poorly understood. Here, we examined the effects of muscarinic receptor blockade on rule-related activity in the macaque prefrontal cortex by combining iontophoretic application of the general muscarinic receptor antagonist scopolamine with single-cell recordings while monkeys performed a mnemonic rule-guided saccade task. We found that scopolamine reduced overall neuronal firing rate and impaired rule discriminability of task-selective cells. Saccade and visual direction selectivity measures were also reduced by muscarinic antagonism. These results demonstrate that blockade of muscarinic receptors in DLPFC creates deficits in working memory representation of rules in primates. SIGNIFICANCE STATEMENT: Acetylcholine plays a pivotal role in higher-order cognitive functions, including planning, reasoning, impulse-control, and making decisions based on contingencies or rules. Disruption of acetylcholine function is central to many psychiatric disorders manifesting cognitive impairments, including Alzheimer's disease. Although much is known about the involvement of acetylcholine and its receptors in arousal and attention, its involvement in working memory, an essential short-term memory component of cognition dependent on the integrity of prefrontal cortex, remains poorly understood. Herein, we explored the impact of suppressing acetylcholine signaling on neurons encoding memorized rules while macaque monkeys made responses based on those rules. Our findings provide insights into the neural mechanisms by which a disruption in acetylcholine function impairs working memory in the prefrontal cortex.


Assuntos
Memória/fisiologia , Muscarina/metabolismo , Córtex Pré-Frontal/fisiologia , Movimentos Sacádicos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Atenção/fisiologia , Comportamento de Escolha/efeitos dos fármacos , Iontoforese , Macaca mulatta , Masculino , Memória/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Movimentos Sacádicos/efeitos dos fármacos , Escopolamina/farmacologia
3.
Nat Neurosci ; 10(3): 376-84, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17277774

RESUMO

Dopamine (DA) D1 receptor (D1R) stimulation in prefrontal cortex (PFC) produces an 'inverted-U' dose-response, whereby either too little or too much D1R stimulation impairs spatial working memory. This response has been observed across species, including genetic linkages with human cognitive abilities, PFC activation states and DA synthesis. The cellular basis for the inverted U has long been sought, with in vitro intracellular recordings supporting a variety of potential mechanisms. The current study demonstrates that the D1R agonist inverted-U response can be observed in PFC neurons of behaving monkeys: low levels of D1R stimulation enhance spatial tuning by suppressing responses to nonpreferred directions, whereas high levels reduce delay-related firing for all directions, eroding tuning. These sculpting actions of D1R stimulation are mediated in monkeys and rats by cyclic AMP intracellular signaling. The evidence for an inverted U at the cellular level in behaving animals promises to bridge in vitro molecular analyses with human cognitive experience.


Assuntos
Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Receptores de Dopamina D1/fisiologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Comportamento Animal , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Iontoforese/métodos , Macaca mulatta , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Testes Neuropsicológicos , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Tionucleotídeos/farmacologia
4.
Front Neural Circuits ; 15: 648624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790746

RESUMO

Neuromodulation by acetylcholine plays a vital role in shaping the physiology and functions of cerebral cortex. Cholinergic neuromodulation influences brain-state transitions, controls the gating of cortical sensory stimulus responses, and has been shown to influence the generation and maintenance of persistent activity in prefrontal cortex. Here we review our current understanding of the role of muscarinic cholinergic receptors in primate prefrontal cortex during its engagement in the performance of working memory tasks. We summarize the localization of muscarinic receptors in prefrontal cortex, review the effects of muscarinic neuromodulation on arousal, working memory and cognitive control tasks, and describe the effects of muscarinic M1 receptor stimulation and blockade on the generation and maintenance of persistent activity of prefrontal neurons encoding working memory representations. Recent studies describing the pharmacological effects of M1 receptors on prefrontal persistent activity demonstrate the heterogeneity of muscarinic actions and delineate unexpected modulatory effects discovered in primate prefrontal cortex when compared with studies in rodents. Understanding the underlying mechanisms by which muscarinic receptors regulate prefrontal cognitive control circuitry will inform the search of muscarinic-based therapeutic targets in the treatment of neuropsychiatric disorders.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal , Animais , Neurônios , Primatas , Receptores Muscarínicos
5.
Neuron ; 98(6): 1256-1268.e4, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29887340

RESUMO

Acetylcholine release in the prefrontal cortex (PFC), acting through muscarinic receptors, has an essential role in regulating flexible behavior and working memory (WM). General muscarinic receptor blockade disrupts PFC WM representations, while selective stimulation of muscarinic receptor subtypes is of great interest for the treatment of cognitive dysfunction in Alzheimer's disease. Here, we tested selective stimulation and blockade of muscarinic M1 receptors (M1Rs) in macaque PFC, during performance of a cognitive control task in which rules maintained in WM specified saccadic responses. We hypothesized that M1R blockade and stimulation would disrupt and enhance rule representation in WM, respectively. Unexpectedly, M1R blockade did not consistently affect PFC neuronal rule selectivity. Moreover, M1R stimulation suppressed PFC activity, and at higher doses, degraded rule representations. Our results suggest that, in primates, the deleterious effects of general muscarinic blockade on PFC WM activity are not mediated by M1Rs, while their overstimulation deteriorates PFC rule maintenance.


Assuntos
Memória de Curto Prazo/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Cloreto de (4-(m-Clorofenilcarbamoiloxi)-2-butinil)trimetilamônio/farmacologia , Regulação Alostérica , Animais , Benzamidas/farmacologia , Iontoforese , Macaca mulatta , Memória de Curto Prazo/fisiologia , Neurônios/metabolismo , Pirenzepina/farmacologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Receptor Muscarínico M1/metabolismo
6.
Front Neural Circuits ; 11: 91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259545

RESUMO

The prefrontal cortex (PFC) is indispensable for several higher-order cognitive and executive capacities of primates, including representation of salient stimuli in working memory (WM), maintenance of cognitive task set, inhibition of inappropriate responses and rule-guided flexible behavior. PFC networks are subject to robust neuromodulation from ascending catecholaminergic systems. Disruption of these systems in PFC has been implicated in cognitive deficits associated with several neuropsychiatric disorders. Over the past four decades, a considerable body of work has examined the influence of dopamine on macaque PFC activity representing spatial WM. There has also been burgeoning interest in neuromodulation of PFC circuits involved in other cognitive functions of PFC, including representation of rules to guide flexible behavior. Here, we review recent neuropharmacological investigations conducted in our laboratory and others of the role of PFC dopamine receptors in regulating rule-guided behavior in non-human primates. Employing iontophoresis, we examined the effects of local manipulation of dopaminergic subtypes on neuronal activity during performance of rule-guided pro- and antisaccades, an experimental paradigm sensitive to PFC integrity, wherein deficits in performance are reliably observed in many neuropsychiatric disorders. We found dissociable effects of dopamine receptors on neuronal activity for rule representation and oculomotor responses and discuss these findings in the context of prior studies that have examined the role of dopamine in spatial delayed response tasks, attention, target selection, abstract rules, visuomotor learning and reward. The findings we describe here highlight the common features, as well as heterogeneity and context dependence of dopaminergic neuromodulation in regulating the efficacy of cognitive functions of PFC in health and disease.


Assuntos
Cognição/fisiologia , Função Executiva/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Cognição/efeitos dos fármacos , Função Executiva/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos
7.
Cell Rep ; 16(3): 805-16, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27373147

RESUMO

Studies of neuromodulation of spatial short-term memory have shown that dopamine D1 receptor (D1R) stimulation in dorsolateral prefrontal cortex (DLPFC) dose-dependently modulates memory activity, whereas D2 receptors (D2Rs) selectively modulate activity related to eye movements hypothesized to encode movement feedback. We examined localized stimulation of D1Rs and D2Rs on DLPFC neurons engaged in a task involving rule representation in memory to guide appropriate eye movements toward or away from a visual stimulus. We found dissociable effects of D1R and D2R on DLPFC physiology. D1R stimulation degrades memory activity for the task rule and increases stimulus-related selectivity. In contrast, D2R stimulation affects motor activity tuning only when eye movements are made to the stimulus. Only D1R stimulation degrades task performance and increases impulsive responding. Our results suggest that D1Rs regulate rule representation and impulse control, whereas D2Rs selectively modulate eye-movement-related dynamics and not rule representation in the DLPFC.


Assuntos
Comportamento Animal/fisiologia , Movimentos Oculares/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Dopamina/metabolismo , Macaca mulatta , Masculino , Memória de Curto Prazo/fisiologia , Neurônios/metabolismo
8.
Biol Psychiatry ; 78(12): 860-70, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25731884

RESUMO

BACKGROUND: Psychiatric disorders such as schizophrenia are worsened by stress, and working memory deficits are often a central feature of illness. Working memory is mediated by the persistent firing of prefrontal cortical (PFC) pyramidal neurons. Stress impairs working memory via high levels of dopamine D1 receptor (D1R) activation of cyclic adenosine monophosphate signaling, which reduces PFC neuronal firing. The current study examined whether D1R-cyclic adenosine monophosphate signaling reduces neuronal firing and impairs working memory by increasing the open state of hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels, which are concentrated on dendritic spines where PFC pyramidal neurons interconnect. METHODS: A variety of methods were employed to test this hypothesis: dual immunoelectron microscopy localized D1R and HCN channels, in vitro recordings tested for D1R actions on HCN channel current, while recordings in monkeys performing a working memory task tested for D1R-HCN channel interactions in vivo. Finally, cognitive assessments following intra-PFC infusions of drugs examined D1R-HCN channel interactions on working memory performance. RESULTS: Immunoelectron microscopy confirmed D1R colocalization with HCN channels near excitatory-like synapses on dendritic spines in primate PFC. Mouse PFC slice recordings demonstrated that D1R stimulation increased HCN channel current, while local HCN channel blockade in primate PFC protected task-related firing from D1R-mediated suppression. D1R stimulation in rat or monkey PFC impaired working memory performance, while HCN channel blockade in PFC prevented this impairment in rats exposed to either stress or D1R stimulation. CONCLUSIONS: These findings suggest that D1R stimulation or stress weakens PFC function via opening of HCN channels at network synapses.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptores de Dopamina D1/fisiologia , Estresse Fisiológico , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Macaca mulatta , Masculino , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/ultraestrutura , Células Piramidais/efeitos dos fármacos , Células Piramidais/ultraestrutura , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura
9.
Cell ; 129(2): 397-410, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17448997

RESUMO

Spatial working memory (WM; i.e., "scratchpad" memory) is constantly updated to guide behavior based on representational knowledge of spatial position. It is maintained by spatially tuned, recurrent excitation within networks of prefrontal cortical (PFC) neurons, evident during delay periods in WM tasks. Stimulation of postsynaptic alpha2A adrenoceptors (alpha2A-ARs) is critical for WM. We report that alpha2A-AR stimulation strengthens WM through inhibition of cAMP, closing Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels and strengthening the functional connectivity of PFC networks. Ultrastructurally, HCN channels and alpha2A-ARs were colocalized in dendritic spines in PFC. In electrophysiological studies, either alpha2A-AR stimulation, cAMP inhibition or HCN channel blockade enhanced spatially tuned delay-related firing of PFC neurons. Conversely, delay-related network firing collapsed under conditions of excessive cAMP. In behavioral studies, either blockade or knockdown of HCN1 channels in PFC improved WM performance. These data reveal a powerful mechanism for rapidly altering the strength of WM networks in PFC.


Assuntos
Canais Iônicos/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Espinhas Dendríticas/química , Espinhas Dendríticas/ultraestrutura , Eletrofisiologia , Guanfacina/farmacologia , Canais Iônicos/análise , Macaca mulatta , Masculino , Neurônios/química , Córtex Pré-Frontal/citologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/análise
10.
Science ; 303(5659): 853-6, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14764884

RESUMO

Prefrontal neurons engaged by working memory tasks express a sequence of phasic and tonic activations linked to a train of sensory, mnemonic, and response-related events. Here, we report that the dopamine D2 receptor selectively modulates the neural activities associated with memory-guided saccades in oculomotor delayed-response tasks yet has little or no effect on the persistent mnemonic-related activity, which is instead modulated by D1 receptors. This associates the D2 receptor with a specific component of working memory circuitry and fractionates the modulatory effects of D1 and D2 receptors on the neural machinery of a cognitive process.


Assuntos
Memória/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de Dopamina D2/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacologia , Sinais (Psicologia) , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Relação Dose-Resposta a Droga , Eletrofisiologia , Macaca mulatta , Masculino , Desempenho Psicomotor , Quimpirol/farmacologia , Racloprida/farmacologia , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Recompensa , Movimentos Sacádicos , Salicilamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA