Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(15): 8471-8490, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35904805

RESUMO

Correct B cell identity at each stage of cellular differentiation during B lymphocyte development is critically dependent on a tightly controlled epigenomic landscape. We previously identified HDAC7 as an essential regulator of early B cell development and its absence leads to a drastic block at the pro-B to pre-B cell transition. More recently, we demonstrated that HDAC7 loss in pro-B-ALL in infants associates with a worse prognosis. Here we delineate the molecular mechanisms by which HDAC7 modulates early B cell development. We find that HDAC7 deficiency drives global chromatin de-condensation, histone marks deposition and deregulates other epigenetic regulators and mobile elements. Specifically, the absence of HDAC7 induces TET2 expression, which promotes DNA 5-hydroxymethylation and chromatin de-condensation. HDAC7 deficiency also results in the aberrant expression of microRNAs and LINE-1 transposable elements. These findings shed light on the mechanisms by which HDAC7 loss or misregulation may lead to B cell-based hematological malignancies.


Assuntos
Linfócitos B/citologia , Epigênese Genética , Linfócitos B/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Epigenômica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos
2.
Genomics ; 114(3): 110370, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35430283

RESUMO

BACKGROUND: Helicobacter pylori infection is the most important risk factor for gastric cancer (GC). Human gastric adenocarcinoma develops after long-term H. pylori infection via the Correa cascade. This carcinogenic pathway describes the progression from gastritis to atrophy, intestinal metaplasia (IM), dysplasia and GC. Patients with atrophy and intestinal metaplasia are considered to have precancerous lesions of GC (PLGC). H. pylori eradication and endoscopy surveillance are currently the only interventions for preventing GC. Better knowledge of the biology of human PLGC may help find stratification markers and contribute to better understanding of biological mechanisms. One way to achieve this is by using co-expression network analysis. Weighted gene co-expression network analysis (WGCNA) is often used to identify modules from co-expression networks and relate them to clinical traits. It also allows identification of driver genes that may be critical for PLGC. AIM: The purpose of this study was to identify co-expression modules and differential gene expression in dyspeptic patients at different stages of the Correa pathway. METHODS: We studied 96 gastric biopsies from 78 patients that were clinically classified as: non-active (n = 10) and chronic-active gastritis (n = 20), atrophy (n = 12), and IM (n = 36). Gene expression of coding RNAs was determined by microarrays and non-coding RNAs by RNA-seq. The WGCNA package was used for network construction, module detection, module preservation and hub and driver gene selection. RESULTS: WGCNA identified 20 modules for coding RNAs and 4 for each miRNA and small RNA class. Modules were associated with antrum and corpus gastric locations, chronic gastritis and IM. Notably, coding RNA modules correlated with the Correa cascade. One was associated with the presence of H. pylori. In three modules, the module eigengene (ME) gradually increased in the stages toward IM, while in three others the inverse relationship was found. One miRNA module was negatively correlated to IM and was used for a mRNA-miRNA integration analysis. WGCNA also uncovered driver genes. Driver genes show both high connectivity within a module and are significantly associated with clinical traits. Some of those genes have been previously involved in H. pylori carcinogenesis, but others are new. Lastly, using similar external transcriptomic data, we confirmed that the discovered mRNA modules were highly preserved. CONCLUSION: Our analysis captured co-expression modules that provide valuable information to understand the pathogenesis of the progression of PLGC.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/epidemiologia , Mucosa Gástrica/patologia , Gastrite/complicações , Gastrite/epidemiologia , Gastrite/patologia , Atrofia/complicações , Atrofia/patologia , MicroRNAs/genética , Metaplasia/genética , Metaplasia/complicações , Metaplasia/patologia , RNA Mensageiro
3.
BMC Med ; 18(1): 255, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32943059

RESUMO

BACKGROUND: Colon capsule endoscopy (CCE) and CT colonography (CTC) are minimally invasive techniques for colorectal cancer (CRC) screening. Our objective is to compare CCE and CTC for the identification of patients with colorectal neoplasia among participants in a CRC screening programme with positive faecal immunochemical test (FIT). Primary outcome was to compare the performance of CCE and CTC in detecting patients with neoplastic lesions. METHODS: The VICOCA study is a prospective, single-centre, randomised trial conducted from March 2014 to May 2016; 662 individuals were invited and 349 were randomised to CCE or CTC before colonoscopy. Endoscopists were blinded to the results of CCE and CTC. RESULTS: Three hundred forty-nine individuals were included: 173 in the CCE group and 176 in the CTC group. Two hundred ninety individuals agreed to participate: 147 in the CCE group and 143 in the CTC group. In the intention-to-screen analysis, sensitivity, specificity and positive and negative predictive values for the identification of individuals with colorectal neoplasia were 98.1%, 76.6%, 93.7% and 92.0% in the CCE group and 64.9%, 95.7%, 96.8% and 57.7% in the CTC group. In terms of detecting significant neoplastic lesions, the sensitivity of CCE and CTC was 96.1% and 79.3%, respectively. Detection rate for advanced colorectal neoplasm was higher in the CCE group than in the CTC group (100% and 93.1%, respectively; RR = 1.07; p = 0.08). Both CCE and CTC identified all patients with cancer. CCE detected more patients with any lesion than CTC (98.6% and 81.0%, respectively; RR = 1.22; p = 0.002). CONCLUSION: Although both techniques seem to be similar in detecting patients with advanced colorectal neoplasms, CCE is more sensitive for the detection of any neoplastic lesion. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02081742 . Registered: September 16, 2013.


Assuntos
Endoscopia por Cápsula/métodos , Colonografia Tomográfica Computadorizada/métodos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Programas de Rastreamento/métodos , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
4.
FASEB J ; 32(7): 3502-3517, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452566

RESUMO

A considerable proportion of tumors exhibit aneuploid karyotypes, likely resulting from the progressive loss of chromosomes after whole-genome duplication. Here, by using isogenic diploid and near-tetraploid (4N) single-cell-derived clones from the same parental cell lines, we aimed at exploring how polyploidization affects cellular functions and how tetraploidy generates chromosome instability. Gene expression profiling in 4N clones revealed a significant enrichment of transcripts involved in cell cycle and DNA replication. Increased levels of replication stress in 4N cells resulted in DNA damage, impaired proliferation caused by a cell cycle delay during S phase, and higher sensitivity to S phase checkpoint inhibitors. In fact, increased levels of replication stress were also observed in nontransformed, proliferative posttetraploid RPE1 cells. Additionally, replication stress promoted higher levels of intercellular genomic heterogeneity and ongoing genomic instability, which could be explained by high rates of mitotic defects, and was alleviated by the supplementation of exogenous nucleosides. Finally, our data found that 4N cancer cells displayed increased migratory and invasive capacity, both in vitro and in primary colorectal tumors, indicating that tetraploidy can promote aggressive cancer cell behavior.-Wangsa, D., Quintanilla, I., Torabi, K., Vila-Casadesús, M., Ercilla, A., Klus, G., Yuce, Z., Galofré, C., Cuatrecasas, M., Lozano, J. J., Agell, N., Cimini, D., Castells, A., Ried, T., Camps, J. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness.


Assuntos
Movimento Celular , Instabilidade Cromossômica , Dano ao DNA , Neoplasias/genética , Tetraploidia , Linhagem Celular Tumoral , Replicação do DNA , Humanos , Fase S
5.
Endoscopy ; 51(2): 142-151, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30068004

RESUMO

BACKGROUND: Serrated polyposis syndrome (SPS) has been associated with an increased risk of colorectal cancer (CRC). Accordingly, intensive surveillance with annual colonoscopy is advised. The aim of this multicenter study was to describe the risk of advanced lesions in SPS patients undergoing surveillance, and to identify risk factors that could guide the prevention strategy. METHODS: From March 2013 to April 2015, 296 patients who fulfilled criteria I and/or III for SPS were retrospectively recruited at 18 centers. We selected patients in whom successful clearing colonoscopy had been performed and who underwent subsequent endoscopic surveillance. Advanced neoplasia was defined as CRC, advanced adenoma, or advanced serrated lesion that were ≥ 10 mm and/or with dysplasia. Cumulative incidence of advanced neoplasia was calculated and independent predictors of advanced neoplasia development were identified. RESULTS: In 152 SPS patients a total of 315 surveillance colonoscopies were performed (median 2, range 1 - 7). The 3-year cumulative incidence of CRC and advanced neoplasia were 3.1 % (95 % confidence interval [CI] 0 - 6.9) and 42.0 % (95 %CI 32.4 - 51.7), respectively. Fulfilling both I + III criteria and the presence of advanced serrated lesions at baseline colonoscopy were independent predictors of advanced neoplasia development (odds ratio [OR] 1.85, 95 %CI 1.03 - 3.33, P  = 0.04 and OR 2.62, 95 %CI 1.18 - 5.81, P  = 0.02, respectively). During follow-up, nine patients (5.9 %) were referred for surgery for invasive CRC (n = 4, 2.6 %) or because of polyp burden (n = 5, 3.3 %). After total colectomy, 17.9 % patients developed advanced neoplasia in the retained rectum. CONCLUSIONS: Patients with SPS have a substantial risk of developing advanced neoplasia under endoscopic surveillance, whereas CRC incidence is low. Personalized endoscopic surveillance based on polyp burden and advanced serrated histology could help to optimize prevention in patients with SPS.


Assuntos
Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/patologia , Colonoscopia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Espanha/epidemiologia , Síndrome
6.
BMC Bioinformatics ; 19(1): 224, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898651

RESUMO

BACKGROUND: Mutational signatures have been proved as a valuable pattern in somatic genomics, mainly regarding cancer, with a potential application as a biomarker in clinical practice. Up to now, several bioinformatic packages to address this topic have been developed in different languages/platforms. MutationalPatterns has arisen as the most efficient tool for the comparison with the signatures currently reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. However, the analysis of mutational signatures is nowadays restricted to a small community of bioinformatic experts. RESULTS: In this work we present Mutational Signatures in Cancer (MuSiCa), a new web tool based on MutationalPatterns and built using the Shiny framework in R language. By means of a simple interface suited to non-specialized researchers, it provides a comprehensive analysis of the somatic mutational status of the supplied cancer samples. It permits characterizing the profile and burden of mutations, as well as quantifying COSMIC-reported mutational signatures. It also allows classifying samples according to the above signature contributions. CONCLUSIONS: MuSiCa is a helpful web application to characterize mutational signatures in cancer samples. It is accessible online at http://bioinfo.ciberehd.org/GPtoCRC/en/tools.html and source code is freely available at https://github.com/marcos-diazg/musica .


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genes Neoplásicos , Mutação , Neoplasias/genética , Transcriptoma , Navegador , Variação Genética , Genoma Humano , Humanos , Neoplasias/diagnóstico , Software
7.
Chromosoma ; 126(5): 655-667, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28343235

RESUMO

Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/ß-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.


Assuntos
Núcleo Celular/metabolismo , Cromossomos Humanos/metabolismo , Interfase , Transdução de Sinais , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Cromossomos Humanos/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente
8.
Ann Surg ; 265(6): 1226-1234, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27232245

RESUMO

OBJECTIVE: The aim of our study was to analyze the miRNome of pancreatic ductal adenocarcinoma (PDAC) and its preneoplastic lesion intraductal papillary mucinous neoplasm (IPMN), to find new microRNA (miRNA)-based biomarkers for early detection of pancreatic neoplasia. OBJECTIVE: Effective early detection methods for PDAC are needed. miRNAs are good biomarker candidates. METHODS: Pancreatic tissues (n = 165) were obtained from patients with PDAC, IPMN, or from control individuals (C), from Hospital Clínic of Barcelona. Biomarker discovery was done using next-generation sequencing in a discovery set of 18 surgical samples (11 PDAC, 4 IPMN, 3 C). MiRNA validation was carried out by quantitative reverse transcriptase PCR in 2 different set of samples. Set 1-52 surgical samples (24 PDAC, 7 IPMN, 6 chronic pancreatitis, 15 C), and set 2-95 endoscopic ultrasound-guided fine-needle aspirations (60 PDAC, 9 IPMN, 26 C). RESULTS: In all, 607 and 396 miRNAs were significantly deregulated in PDAC and IPMN versus C. Of them, 40 miRNAs commonly overexpressed in both PDAC and IPMN were selected for further validation. Among them, significant up-regulation of 31 and 30 miRNAs was confirmed by quantitative reverse transcriptase PCR in samples from set 1 and set 2, respectively. CONCLUSIONS: miRNome analysis shows that PDAC and IPMN have differential miRNA profiles with respect to C, with a large number of deregulated miRNAs shared by both neoplastic lesions. Indeed, we have identified and validated 30 miRNAs whose expression is significantly increased in PDAC and IPMN lesions. The feasibility of detecting these miRNAs in endoscopic ultrasound-guided fine-needle aspiration samples makes them good biomarker candidates for early detection of pancreatic cancer.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Papilar/diagnóstico , MicroRNAs/análise , Neoplasias Pancreáticas/diagnóstico , Lesões Pré-Cancerosas/diagnóstico , Detecção Precoce de Câncer , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Gut ; 65(9): 1535-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27196584

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) are well-known regulators of disease pathogenesis and have great potential as biomarkers and therapeutic targets. We aimed at profiling miRNAs in alcoholic hepatitis (AH) and identifying miRNAs potentially involved in liver injury. DESIGN: MiRNA profiling was performed in liver samples from patients with AH, alcohol liver disease, non-alcoholic steatohepatitis, HCV disease and normal liver tissue. Expression of miRNAs was assessed in liver and serum from patients with AH and animal models. Mimic and decoy miR-182 were used in vitro and in vivo to evaluate miR-182's biological functions. RESULTS: MiRNA expression profile in liver was highly altered in AH and distinctive from alcohol-induced cirrhotic livers. Moreover, we identified a set of 18 miRNAs predominantly expressed in AH as compared with other chronic liver conditions. Integrative miRNA-mRNA functional analysis revealed the association of AH-altered miRNAs with nuclear receptors, IGF-1 signalling and cholestasis. Interestingly, miR-182 was the most highly expressed miRNA in AH, which correlated with degree of ductular reaction, disease severity and short-term mortality. MiR-182 mimic induced an upregulation of inflammatory mediators in biliary cells. At experimental level, miR-182 was increased in biliary cells in mice fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet but not upregulated by alcohol intake or fibrosis. Inhibition of miR-182 in DDC-fed mice reduced liver damage, bile acid accumulation and inflammatory response. CONCLUSIONS: AH is characterised by a deregulated miRNA profile, including miR-182, which is associated with disease severity and liver injury. These results highlight the potential of miRNAs as therapeutic targets and biomarkers in AH.


Assuntos
Hepatite Alcoólica , Fígado , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica , Adulto , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Hepatite Alcoólica/genética , Hepatite Alcoólica/mortalidade , Hepatite Alcoólica/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática/métodos , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Índice de Gravidade de Doença , Estatística como Assunto
10.
Gastroenterology ; 148(4): 806-18.e10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557953

RESUMO

BACKGROUND & AIMS: Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary hepatic cancer that develops in children and young adults without cirrhosis. Little is known about its pathogenesis, and it can be treated only with surgery. We performed an integrative genomic analysis of a large series of patients with FLC to identify associated genetic factors. METHODS: By using 78 clinically annotated FLC samples, we performed whole-transcriptome (n = 58), single-nucleotide polymorphism array (n = 41), and next-generation sequencing (n = 48) analyses; we also assessed the prevalence of the DNAJB1-PRKACA fusion transcript associated with this cancer (n = 73). We performed class discovery using non-negative matrix factorization, and functional annotation using gene-set enrichment analyses, nearest template prediction, ingenuity pathway analyses, and immunohistochemistry. The genomic identification of significant targets in a cancer algorithm was used to identify chromosomal aberrations, MuTect and VarScan2 were used to identify somatic mutations, and the random survival forest was used to determine patient prognoses. Findings were validated in an independent cohort. RESULTS: Unsupervised gene expression clustering showed 3 robust molecular classes of tumors: the proliferation class (51% of samples) had altered expression of genes that regulate proliferation and mammalian target of rapamycin signaling activation; the inflammation class (26% of samples) had altered expression of genes that regulate inflammation and cytokine enriched production; and the unannotated class (23% of samples) had a gene expression signature that was not associated previously with liver tumors. Expression of genes that regulate neuroendocrine function, as well as histologic markers of cholangiocytes and hepatocytes, were detected in all 3 classes. FLCs had few copy number variations; the most frequent were focal amplification at 8q24.3 (in 12.5% of samples), and deletions at 19p13 (in 28% of samples) and 22q13.32 (in 25% of samples). The DNAJB1-PRKACA fusion transcript was detected in 79% of samples. FLC samples also contained mutations in cancer-related genes such as BRCA2 (in 4.2% of samples), which are uncommon in liver neoplasms. However, FLCs did not contain mutations most commonly detected in liver cancers. We identified an 8-gene signature that predicted survival of patients with FLC. CONCLUSIONS: In a genomic analysis of 78 FLC samples, we identified 3 classes based on gene expression profiles. FLCs contain mutations and chromosomal aberrations not previously associated with liver cancer, and almost 80% contain the DNAJB1-PRKACA fusion transcript. By using this information, we identified a gene signature that is associated with patient survival time.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Adolescente , Adulto , Idoso , Proliferação de Células/genética , Criança , Aberrações Cromossômicas , Análise por Conglomerados , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Variações do Número de Cópias de DNA , Feminino , Genoma , Proteínas de Choque Térmico HSP40/genética , Humanos , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto Jovem
11.
BMC Genomics ; 16: 907, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26546125

RESUMO

BACKGROUND: Down syndrome (DS) or trisomy 21 is the result of a genetic dosage imbalance that translates in a broad clinical spectrum. A major challenge in the study of DS is the identification of functional genetic elements with wide impact on phenotypic alterations. Recently, miRNAs have been recognized as major contributors to several disease conditions by acting as post-transcriptional regulators of a plethora of genes. Five chromosome 21 (HSA21) miRNAs have been found overexpressed in DS individuals and could function as key elements in the pathophysiology. Interestingly, in the trisomic Ts65Dn DS mouse model two of these miRNAs (miR-155 and miR-802) are also triplicated and overexpressed in brain. RESULTS: In the current work, we interrogated the impact of miR-155 and miR-802 upregulation on the transcriptome of Ts65Dn brains. We developed a lentiviral miRNA-sponge strategy (Lv-miR155-802T) to identify in vivo relevant miR-155 and miR-802 target mRNAs. Hippocampal injections of lentiviral sponges in Ts65Dn mice normalized the expression of miR-155 and miR-802 and rescued the levels of their targets methyl-CpG-binding protein 2 gene (Mecp2), SH2 (Src homology 2)-containing inositol phosphatase-1 (Ship1) and Forkhead box protein M1 (FoxM1). Transcriptomic data of Lv-miR155-802T miRNA-sponge treated hippocampi correlated with candidate targets highlighting miRNA dosage-sensitive genes. Significant associations were found in a subset of genes (Rufy2, Nova1, Nav1, Thoc1 and Sumo3) that could be experimentally validated. CONCLUSIONS: The lentiviral miRNA-sponge strategy demonstrated the genome-wide regulatory effects of miR-155 and miR-802. Furthermore, the analysis combining predicted candidates and experimental transcriptomic data proved to retrieve genes with potential significance in DS-hippocampal phenotype bridging with DS other neurological-associated diseases such as Alzheimer's disease.


Assuntos
Síndrome de Down/genética , Hipocampo/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos
12.
Genet Med ; 17(2): 131-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25058500

RESUMO

PURPOSE: Colorectal cancer is an important cause of mortality in the developed world. Hereditary forms are due to germ-line mutations in APC, MUTYH, and the mismatch repair genes, but many cases present familial aggregation but an unknown inherited cause. The hypothesis of rare high-penetrance mutations in new genes is a likely explanation for the underlying predisposition in some of these familial cases. METHODS: Exome sequencing was performed in 43 patients with colorectal cancer from 29 families with strong disease aggregation without mutations in known hereditary colorectal cancer genes. Data analysis selected only very rare variants (0-0.1%), producing a putative loss of function and located in genes with a role compatible with cancer. Variants in genes previously involved in hereditary colorectal cancer or nearby previous colorectal cancer genome-wide association study hits were also chosen. RESULTS: Twenty-eight final candidate variants were selected and validated by Sanger sequencing. Correct family segregation and somatic studies were used to categorize the most interesting variants in CDKN1B, XRCC4, EPHX1, NFKBIZ, SMARCA4, and BARD1. CONCLUSION: We identified new potential colorectal cancer predisposition variants in genes that have a role in cancer predisposition and are involved in DNA repair and the cell cycle, which supports their putative involvement in germ-line predisposition to this neoplasm.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Exoma , Predisposição Genética para Doença , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Aconselhamento Genético , Mutação em Linhagem Germinativa , Humanos , Perda de Heterozigosidade , Masculino , Linhagem , Reprodutibilidade dos Testes
13.
Med ; 4(10): 710-727.e5, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37572657

RESUMO

BACKGROUND: Immunotherapy is effective, but current biomarkers for patient selection have proven modest sensitivity. Here, we developed VIGex, an optimized gene signature based on the expression level of 12 genes involved in immune response with RNA sequencing. METHODS: We implemented VIGex using the nCounter platform (Nanostring) on a large clinical cohort encompassing 909 tumor samples across 45 tumor types. VIGex was developed as a continuous variable, with cutoffs selected to detect three main categories (hot, intermediate-cold and cold) based on the different inflammatory status of the tumor microenvironment. FINDINGS: Hot tumors had the highest VIGex scores and exhibited an increased abundance of tumor-infiltrating lymphocytes as compared with the intermediate-cold and cold. VIGex scores varied depending on tumor origin and anatomic site of metastases, with liver metastases showing an immunosuppressive tumor microenvironment. The predictive power of VIGex-Hot was observed in a cohort of 98 refractory solid tumor from patients treated in early-phase immunotherapy trials and its clinical performance was confirmed through an extensive metanalysis across 13 clinically annotated gene expression datasets from 877 patients treated with immunotherapy agents. Last, we generated a pan-cancer biomarker platform that integrates VIGex categories with the expression levels of immunotherapy targets under development in early-phase clinical trials. CONCLUSIONS: Our results support the clinical utility of VIGex as a tool to aid clinicians for patient selection and personalized immunotherapy interventions. FUNDING: BBVA Foundation; 202-2021 Division of Medical Oncology and Hematology Fellowship award; Princess Margaret Cancer Center.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/metabolismo , Fatores Imunológicos/metabolismo , Fatores Imunológicos/uso terapêutico , Oncologia , Microambiente Tumoral/genética
14.
Clin Cancer Res ; 29(2): 432-445, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36374558

RESUMO

PURPOSE: Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN: We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS: This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS: Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Avaliação Pré-Clínica de Medicamentos , Xenoenxertos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética
15.
Stem Cell Reports ; 17(9): 1991-2004, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35961310

RESUMO

IL-6 has been shown to be required for somatic cell reprogramming into induced pluripotent stem cells (iPSCs). However, how Il6 expression is regulated and whether it plays a role during embryo development remains unknown. Here, we describe that IL-6 is necessary for C/EBPα-enhanced reprogramming of B cells into iPSCs but not for B cell to macrophage transdifferentiation. C/EBPα overexpression activates both Il6 and Il6ra genes in B cells and in PSCs. In embryo development, Cebpa is enriched in the trophectoderm of blastocysts together with Il6, while Il6ra is mostly expressed in the inner cell mass (ICM). In addition, Il6 expression in blastocysts requires Cebpa. Blastocysts secrete IL-6 and neutralization of the cytokine delays the morula to blastocyst transition. The observed requirement of C/EBPα-regulated IL-6 signaling for pluripotency during somatic cell reprogramming thus recapitulates a physiologic mechanism in which the trophectoderm acts as niche for the ICM through the secretion of IL-6.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Interleucina-6 , Blastocisto , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Desenvolvimento Embrionário , Interleucina-6/metabolismo , Mórula/metabolismo
16.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069007

RESUMO

Intraductal papillary mucinous neoplasms (IPMN) are pancreatic cystic lesions that can develop into pancreatic ductal adenocarcinoma (PDAC). Although there is an increasing incidence of IPMN diagnosis, the mechanisms of formation and progression into invasive cancer remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs, repressors of mRNA translation, and promising diagnostic biomarkers for IPMN and PDAC. Functional information on the role of early-altered miRNAs in this setting would offer novel strategies for tracking the IPMN-to-PDAC progression. In order to detect mRNAs that are likely to be under miRNA regulation in IPMNs, whole transcriptome and miRNome data from normal pancreatic tissue (n = 3) and IPMN lesions (n = 4) were combined and filtered according to negative correlation and miRNA-target prediction databases by using miRComb R package. Further comparison analysis with PDAC data allowed us to obtain a subset of miRNA-mRNA pairs shared in IPMN and PDAC. Functional enrichment analysis unravelled processes that are mainly related with cell structure, actin cytoskeleton, and metabolism. MiR-181a appeared as a master regulator of these processes. The expression of selected miRNA-mRNA pairs was validated by qRT-PCR in an independent cohort of patients (n = 40), and then analysed in different pancreatic cell lines. Finally, we generated a cellular model of HPDE cells stably overexpressing miR-181a, which showed a significant alteration of actin cytoskeleton structures accompanied by a significant downregulation of EPB41L4B and SEL1L expression. In situ hybridization of miR-181a and immunohistochemistry of EPB41L4B and SEL1L in pancreatic tissues (n = 4 Healthy; n = 3 IPMN; n = 4 PDAC) were also carried out. In this study, we offer insights on the potential implication of miRNA alteration in the regulation of structural and metabolic changes that pancreatic cells experience during IPMN establishment and that are maintained in PDAC.

17.
Sci Data ; 7(1): 296, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901043

RESUMO

Helicobacter pylori infects 4.4 billion individuals worldwide and is considered the most important etiologic agent for peptic ulcers and gastric cancer. Individual response to H. pylori infection is complex and depends on complex interactions between host and environmental factors. The pathway towards gastric cancer is a sequence of events known as Correa's model of gastric carcinogenesis, a stepwise inflammatory process from normal mucosa to chronic-active gastritis, atrophy, metaplasia and gastric adenocarcinoma. This study examines gastric clinical specimens representing different steps of the Correa pathway with the aim of identifying the expression profiles of coding- and non-coding RNAs that may have a role in Correa's model of gastric carcinogenesis. We screened for differentially expressed genes in gastric biopsies by employing RNAseq, microarrays and qRT-PCR. Here we provide a detailed description of the experiments, methods and results generated. The datasets may help other scientists and clinicians to find new clues to the pathogenesis of H. pylori and the mechanisms of progression of the infection to more severe gastric diseases. Data is available via ArrayExpress.


Assuntos
Infecções por Helicobacter/genética , RNA não Traduzido/análise , RNA/análise , Estudos Transversais , Humanos , Análise em Microsséries , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real
18.
Clin Cancer Res ; 26(23): 6350-6361, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873569

RESUMO

PURPOSE: Chromosomal instability is a hallmark of cancer that results in broad and focal copy-number alterations (CNAs), two events associated with distinct molecular, immunologic, and clinical features. In hepatocellular carcinoma (HCC), the role of CNAs has not been thoroughly assessed. Thus, we dissected the impact of CNA burdens on HCC molecular and immune features. EXPERIMENTAL DESIGN: We analyzed SNP array data from 452 paired tumor/adjacent resected HCCs and 25 dysplastic nodules. For each sample, broad and focal CNA burdens were quantified using CNApp, and the resulting broad scores (BS) and focal scores (FS) were correlated with transcriptomic, mutational, and methylation profiles, tumor immune composition, and clinicopathologic data. RESULTS: HCCs with low broad CNA burdens (defined as BS ≤ 4; 17%) presented high inflammation, active infiltrate signaling, high cytolytic activity, and enrichment of the "HCC immune class" and gene signatures related to antigen presentation. Conversely, tumors with chromosomal instability (high broad CNA loads, BS ≥ 11; 40%), displayed immune-excluded traits and were linked to proliferation, TP53 dysfunction, and DNA repair. Candidate determinants of the low cytotoxicity and immune exclusion features of high-BS tumors included alterations in antigen-presenting machinery (i.e., HLA), widespread hypomethylation, and decreased rates of observed/expected neoantigenic mutations. High FSs were independent of tumor immune features, but were related to proliferation, TP53 dysfunction, and progenitor cell traits. CONCLUSIONS: HCCs with high chromosomal instability exhibit features of immune exclusion, whereas tumors displaying low burdens of broad CNAs present an immune active profile. These CNA scores can be tested to predict response to immunotherapies.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Instabilidade Cromossômica , Variações do Número de Cópias de DNA , Neoplasias Hepáticas/patologia , Mutação , Idoso , Antígenos de Neoplasias/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Metilação de DNA , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico
19.
Oncogenesis ; 9(5): 43, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366853

RESUMO

Biomarkers and effective therapeutic agents to improve the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) are urgently required. We aimed to analyze the prognostic value and mechanistic action of miR-93 in PDAC. Correlation of miR-93 tumor levels from 83 PDAC patients and overall survival (OS) was analyzed by Kaplan-Meier. MiR-93 depletion in PANC-1 and MIA PaCa-2 cells was achieved by CRISPR/Cas9 and miR-93 overexpression in HPDE cells by retroviral transduction. Cell proliferation, migration and invasion, cell cycle analysis, and in vivo tumor xenografts in nude mice were assessed. Proteomic analysis by mass spectrometry and western-blot was also performed. Finally, miR-93 direct binding to candidate mRNA targets was evaluated by luciferase reporter assays. High miR-93 tumor levels are significantly correlated with a worst prognosis in PDAC patients. MiR-93 abolition altered pancreatic cancer cells phenotype inducing a significant increase in cell size and a significant decrease in cell invasion and proliferation accompanied by a G2/M arrest. In vivo, lack of miR-93 significantly impaired xenograft tumor growth. Conversely, miR-93 overexpression induced a pro-tumorigenic behavior by significantly increasing cell proliferation, migration, and invasion. Proteomic analysis unveiled a large group of deregulated proteins, mainly related to G2/M phase, microtubule dynamics, and cytoskeletal remodeling. CRMP2, MAPRE1, and YES1 were confirmed as direct targets of miR-93. MiR-93 exerts oncogenic functions by targeting multiple genes involved in microtubule dynamics at different levels, thus affecting the normal cell division rate. MiR-93 or its direct targets (CRMP2, MAPRE1, or YES1) are new potential therapeutic targets for PDAC.

20.
Elife ; 92020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31939734

RESUMO

Somatic copy number alterations (CNAs) are a hallmark of cancer, but their role in tumorigenesis and clinical relevance remain largely unclear. Here, we developed CNApp, a web-based tool that allows a comprehensive exploration of CNAs by using purity-corrected segmented data from multiple genomic platforms. CNApp generates genome-wide profiles, computes CNA scores for broad, focal and global CNA burdens, and uses machine learning-based predictions to classify samples. We applied CNApp to the TCGA pan-cancer dataset of 10,635 genomes showing that CNAs classify cancer types according to their tissue-of-origin, and that each cancer type shows specific ranges of broad and focal CNA scores. Moreover, CNApp reproduces recurrent CNAs in hepatocellular carcinoma and predicts colon cancer molecular subtypes and microsatellite instability based on broad CNA scores and discrete genomic imbalances. In summary, CNApp facilitates CNA-driven research by providing a unique framework to identify relevant clinical implications. CNApp is hosted at https://tools.idibaps.org/CNApp/.


In most cases, human cells contain two copies of each of their genes, yet sometimes this can change, an effect called copy number alteration (CNA). Cancer is a genetic disease and thus, studying the DNA from tumor samples is crucial to improving diagnosis and choosing the right treatment. Most tumors contain cells with CNAs; however, the impact of CNAs in cancer progression is poorly understood. CNAs can be studied by examining the genome of tumor cells and finding which regions display an unusual number of copies. It may also be possible to gather information about different cancer types by analyzing the CNAs in a tumor, but this approach requires the analysis of large amounts of data. To aid the analysis of CNAs in cancer cells, Franch-Expósito, Bassaganyas et al. have created an online tool called CNApp, which is able to identify and count CNAs in genomic data and link them to features associated with different cancers. The hope is that a better understanding of the effect of CNAs in cancer could help better diagnose cancers, and improve outcomes for patients. Potentially, this could also predict what type of treatment would work better for a specific tumor. Besides, by using a machine-learning approach, the tool can also make predictions about specific cancer subtypes in order to facilitate clinical decisions. Franch-Expósito, Bassaganyas et al. tested CNApp using previously existing cancer data from 33 different cancer types to show how CNApp can help the interpretation of CNAs in cancer. Moreover, CNApp can also use CNAs to identify different types of bowel (colorectal) cancer in a way that could help doctors to make decisions about treatment. Together these findings show that CNApp provides an adaptable and accessible research tool for the study of cancer genomics, which could provide opportunities to inform medical procedures.


Assuntos
Variações do Número de Cópias de DNA/genética , Genômica/métodos , Neoplasias/genética , Software , Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Humanos , Internet , Aprendizado de Máquina , Mutação , Neoplasias/patologia , Neoplasias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA