Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 108(2): 490-501, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950533

RESUMO

Remodeling of the bone marrow microenvironment in chronic inflammation and in aging reduces hematopoietic stem cell (HSC) function. To assess the mechanisms of this functional decline of HSC and find strategies to counteract it, we established a model in which the Sfrp1 gene was deleted in Osterix+ osteolineage cells (OS1Δ/Δ mice). HSC from these mice showed severely diminished repopulating activity with associated DNA damage, enriched expression of the reactive oxygen species pathway and reduced single-cell proliferation. Interestingly, not only was the protein level of Catenin beta-1 (bcatenin) elevated, but so was its association with the phosphorylated co-activator p300 in the nucleus. Since these two proteins play a key role in promotion of differentiation and senescence, we inhibited in vivo phosphorylation of p300 through PP2A-PR72/130 by administration of IQ-1 in OS1Δ/Δ mice. This treatment not only reduced the b-catenin/phosphop300 association, but also decreased nuclear p300. More importantly, in vivo IQ-1 treatment fully restored HSC repopulating activity of the OS1Δ/Δ mice. Our findings show that the osteoprogenitor Sfrp1 is essential for maintaining HSC function. Furthermore, pharmacological downregulation of the nuclear b-catenin/phospho-p300 association is a new strategy to restore poor HSC function.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Medula Óssea/metabolismo , Envelhecimento , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Pediatr Allergy Immunol ; 34(4): e13937, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102386

RESUMO

OBJECTIVE: Netherton syndrome (NS) (OMIM:256500) is a very rare autosomal recessive multisystem disorder mostly affecting ectodermal derivatives (skin and hair) and immune system. It is caused by biallelic loss-of-function variants in the SPINK5 gene, encoding the protease inhibitor lymphoepithelial Kazal-type-related inhibitor (LEKTI). MATERIAL, METHODS AND RESULTS: Here, we describe NS clinical and genetic features of homogenous patient group: 9 individuals from 7 families with similar ethnic background and who have the same SPINK5 variant (NM_006846.4: c.1048C > T, p.(Arg350*)) in homozygous or compound heterozygous states, suggesting that it is a common founder variant in Latvian population. Indeed, we were able to show that the variant is common in general Latvian population, and it shares the same haplotype among the NS individual. It is estimated that the variant arose >1000 years ago. Clinically, all nine patients exhibited typical NS skin changes (scaly erythroderma, ichthyosis linearis circumflexa, itchy skin), except for one patient who has a different skin manifestation-epidermodysplasia. Additionally, we show that developmental delay, previously underrecognized in NS, is a common feature among these patients. CONCLUSIONS: This study shows that the phenotype of NS individuals with the same genotype is highly homogeneous.


Assuntos
Síndrome de Netherton , Humanos , Síndrome de Netherton/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Letônia , Mutação , Pele
3.
Eur Heart J ; 42(39): 4077-4088, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34279021

RESUMO

AIMS: Mental stress substantially contributes to the initiation and progression of human disease, including cardiovascular conditions. We aim to investigate the underlying mechanisms of these contributions since they remain largely unclear. METHODS AND RESULTS: Here, we show in humans and mice that leucocytes deplete rapidly from the blood after a single episode of acute mental stress. Using cell-tracking experiments in animal models of acute mental stress, we found that stress exposure leads to prompt uptake of inflammatory leucocytes from the blood to distinct tissues including heart, lung, skin, and, if present, atherosclerotic plaques. Mechanistically, we found that acute stress enhances leucocyte influx into mouse atherosclerotic plaques by modulating endothelial cells. Specifically, acute stress increases adhesion molecule expression and chemokine release through locally derived norepinephrine. Either chemical or surgical disruption of norepinephrine signalling diminished stress-induced leucocyte migration into mouse atherosclerotic plaques. CONCLUSION: Our data show that acute mental stress rapidly amplifies inflammatory leucocyte expansion inside mouse atherosclerotic lesions and promotes plaque vulnerability.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Modelos Animais de Doenças , Células Endoteliais , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Circulation ; 136(5): 476-489, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28487391

RESUMO

BACKGROUND: A chromosomal locus at 4q32.1 has been genome-wide significantly associated with coronary artery disease risk. The locus encompasses GUCY1A3, which encodes the α1 subunit of the soluble guanylyl cyclase (sGC), a key enzyme in the nitric oxide/cGMP signaling pathway. The mechanism linking common variants in this region with coronary risk is not known. METHODS: Gene expression and protein expression were analyzed with quantitative polymerase chain reaction and immunoblotting, respectively. Putative allele-specific transcription factors were identified with in silico analyses and validated via allele-specific quantification of antibody-precipitated chromatin fractions. Regulatory properties of the lead risk variant region were analyzed with reporter gene assays. To assess the effect of zinc finger E box-binding homeobox 1 transcription factor (ZEB1), siRNA-mediated knockdown and overexpression experiments were performed. Association of GUCY1A3 genotype and cellular phenotypes was analyzed with vascular smooth muscle cell migration assays and platelet aggregation analyses. RESULTS: Whole-blood GUCY1A3 mRNA levels were significantly lower in individuals homozygous for the lead (rs7692387) risk variant. Likewise, reporter gene assays demonstrated significantly lower GUCY1A3 promoter activity for constructs carrying this allele. In silico analyses located a DNase I hypersensitivity site to rs7692387 and predicted binding of the transcription factor ZEB1 rather to the nonrisk allele, which was confirmed experimentally. Knockdown of ZEB1 resulted in more profound reduction of nonrisk allele promoter activity and a significant reduction of endogenous GUCY1A3 expression. Ex vivo-studied platelets from homozygous nonrisk allele carriers displayed enhanced inhibition of ADP-induced platelet aggregation by the nitric oxide donor sodium nitroprusside and the phosphodiesterase 5 inhibitor sildenafil compared with homozygous risk allele carriers. Moreover, pharmacological stimulation of sGC led to reduced migration only in vascular smooth muscle cells homozygous for the nonrisk allele. In the Hybrid Mouse Diversity Panel, higher levels of GUCY1A3 expression correlated with less atherosclerosis in the aorta. CONCLUSIONS: Rs7692387 is located in an intronic site that modulates GUCY1A3 promoter activity. The transcription factor ZEB1 binds preferentially to the nonrisk allele, leading to an increase in GUCY1A3 expression, higher sGC levels, and higher sGC activity after stimulation. Finally, human and mouse data link augmented sGC expression to lower risk of atherosclerosis.


Assuntos
Doença da Artéria Coronariana/genética , Guanilil Ciclase Solúvel/genética , Alelos , Plaquetas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Doença da Artéria Coronariana/patologia , GMP Cíclico/metabolismo , Loci Gênicos , Genótipo , Células HEK293 , Homozigoto , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Risco , Citrato de Sildenafila/farmacologia , Guanilil Ciclase Solúvel/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/antagonistas & inibidores , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
5.
J Transl Med ; 14(1): 120, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27150028

RESUMO

BACKGROUND: Circulating microRNAs (miRNAs) emerge as novel biomarkers in cardiovascular diseases. Diagnosing acute pulmonary embolism (PE) remains challenging due to a diverse clinical presentation and the lack of specific biomarkers. Here we evaluate serum miRNAs as potential biomarkers in acute PE. METHODS: We enrolled 30 patients with acute, CT (computed tomography)-angiographically confirmed central PE and collected serum samples on the day of emergency room admission (1st day) and from 22 of these patients 9 months thereafter. For comparison, we examined serum samples from patients with acute non ST-segment elevation myocardial infarction (NSTEMI, n = 30) and healthy individuals (n = 12). RESULTS: We randomly selected 16 out of 30 PE patients and screened sera from the acute (1st day) and chronic stages (9 months) for 754 miRNAs using microarrays and found 37 miRNAs to be differentially regulated. Across all miRNAs, miRNA-1233 displayed the highest fold change (FC) from acute to chronic stage (log2FC 11.5, p < 0.004). We validated miRNA-1233 by real-time quantitative polymerase chain reaction (RT-qPCR). In acute PE (1st day) we found elevated levels of miRNA-1233 in comparison to NSTEMI (log2FC 5.7, p < 0.0001) and healthy controls (log2FC 7.7, p < 0.0001). miRNA-1233 differentiated acute PE from NSTEMI patients and healthy individuals with 90 and 90 % sensitivity, and 100 and 92 % specificity [area under the curve (AUC) 0.95, p < 0.001 and 0.91, p < 0.001], respectively. CONCLUSIONS: This is the first report that identifies a miRNA that allows distinguishing acute PE from acute NSTEMI and healthy individuals with high specificity and sensitivity.


Assuntos
MicroRNAs/sangue , Embolia Pulmonar/sangue , Embolia Pulmonar/diagnóstico , Doença Aguda , Biomarcadores/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
6.
Arterioscler Thromb Vasc Biol ; 35(10): 2207-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26293461

RESUMO

OBJECTIVE: Genome-wide association studies have to date identified 159 significant and suggestive loci for coronary artery disease (CAD). We now report comprehensive bioinformatics analyses of sequence variation in these loci to predict candidate causal genes. APPROACH AND RESULTS: All annotated genes in the loci were evaluated with respect to protein-coding single-nucleotide polymorphism and gene expression parameters. The latter included expression quantitative trait loci, tissue specificity, and miRNA binding. High priority candidate genes were further identified based on literature searches and our experimental data. We conclude that the great majority of causal variations affecting CAD risk occur in noncoding regions, with 41% affecting gene expression robustly versus 6% leading to amino acid changes. Many of these genes differed from the traditionally annotated genes, which was usually based on proximity to the lead single-nucleotide polymorphism. Indeed, we obtained evidence that genetic variants at CAD loci affect 98 genes which had not been linked to CAD previously. CONCLUSIONS: Our results substantially revise the list of likely candidates for CAD and suggest that genome-wide association studies efforts in other diseases may benefit from similar bioinformatics analyses.


Assuntos
Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Doença da Artéria Coronariana/fisiopatologia , Feminino , Loci Gênicos , Variação Genética , Humanos , Masculino , MicroRNAs/genética , Valor Preditivo dos Testes , Regiões Promotoras Genéticas/genética
7.
PLoS One ; 19(9): e0310718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39298385

RESUMO

BACKGROUND: The intricate molecular pathways and genetic factors that underlie the pathophysiology of cervical insufficiency (CI) remain largely unknown and understudied. METHODS: We sequenced exomes from 114 patients in Latvia and Lithuania, diagnosed with a short cervix, CI, or a history of CI in previous pregnancies. To probe the well-known link between CI and connective tissue dysfunction, we introduced a connective tissue dysfunction assessment questionnaire, incorporating Beighton and Brighton scores. The phenotypic data obtained from the questionnaire was correlated with the number of rare damaging variants identified in genes associated with connective tissue disorders (in silico NGS panel). SKAT, SKAT-O, and burden tests were performed to identify genes associated with CI without a priori hypotheses. Pathway enrichment analysis was conducted using both targeted and genome-wide approaches. RESULTS: No patient could be assigned monogenic connective tissue disorder neither genetically, neither clinically upon clinical geneticist evaluation. Expanding our exploration to a genome-wide perspective, pathway enrichment analysis replicated the significance of extracellular matrix-related pathways as important contributors to CI's development. A genome-wide burden analysis unveiled a statistically significant prevalence of rare damaging variants in genes and pathways associated with steroids (p-adj = 5.37E-06). Rare damaging variants, absent in controls (internal database, n = 588), in the progesterone receptor (PGR) (six patients) and glucocorticoid receptor (NR3C1) (two patients) genes were identified within key functional domains, potentially disrupting the receptors' affinity for DNA or ligands. CONCLUSION: Cervical insufficiency in non-syndromic patients is not attributed to a single connective tissue gene variant in a Mendelian fashion but rather to the cumulative effect of multiple inherited gene variants highlighting the significance of the connective tissue pathway in the multifactorial nature of CI. PGR or NR3C1 variants may contribute to the pathophysiology of CI and/or preterm birth through the impaired progesterone action pathways, opening new perspectives for targeted interventions and enhanced clinical management strategies of this condition.


Assuntos
Incompetência do Colo do Útero , Humanos , Feminino , Adulto , Incompetência do Colo do Útero/genética , Doenças do Tecido Conjuntivo/genética , Estudo de Associação Genômica Ampla , Gravidez , Tecido Conjuntivo/metabolismo , Lituânia/epidemiologia
8.
Blood Adv ; 8(20): 5400-5414, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39159429

RESUMO

ABSTRACT: Osteopenia and osteoporosis are common long-term complications of the cytotoxic conditioning regimen for hematopoietic stem cell transplantation (HSCT). We examined mesenchymal stem and progenitor cells (MSPCs), which include skeletal progenitors, from mice undergoing HSCT. Such MSPCs showed reduced fibroblastic colony-forming units frequency, increased DNA damage, and enhanced occurrence of cellular senescence, whereas there was a reduced bone volume in animals that underwent HSCT. This reduced MSPC function correlated with elevated activation of the small Rho guanosine triphosphate hydrolase CDC42, disorganized F-actin distribution, mitochondrial abnormalities, and impaired mitophagy in MSPCs. Changes and defects similar to those in mice were also observed in MSPCs from humans undergoing HSCT. A pharmacological treatment that attenuated the elevated activation of CDC42 restored F-actin fiber alignment, mitochondrial function, and mitophagy in MSPCs in vitro. Finally, targeting CDC42 activity in vivo in animals undergoing transplants improved MSPC quality to increase both bone volume and trabecular bone thickness. Our study shows that attenuation of CDC42 activity is sufficient to attenuate reduced function of MSPCs in a BM transplant setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Proteína cdc42 de Ligação ao GTP , Animais , Humanos , Camundongos , Actinas/metabolismo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Mitofagia
9.
Blood ; 118(10): 2712-22, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21791434

RESUMO

Pleiotrophin (Ptn) is strongly expressed by stromal cells which maintain HSCs. However, in vivo, Ptn deficiency does not alter steady-state hematopoiesis. However, knockdown of Ptn (Ptn(KD)) in stromal cells increases production of hematopoietic progenitors as well as HSC activity in cocultures, suggesting that Ptn may have a role in HSC activation. Indeed, transplantations of wild-type (Ptn(+/+)) HSCs into Ptn(-/-) mice show increased donor cell production in serial transplantations and dominant myeloid regeneration caused by Ptn-dependent regulation of HSC repopulation behavior. This regulation of Lin(-)Kit(+)Sca1(+) function is associated with increased proliferation and, on a molecular level, with up-regulated expression of cyclin D1 (Ccnd1) and C/EBPα (Cepba), but reduced of PPARγ. The known HSC regulator ß-catenin is, however, not altered in the absence of Ptn. In conclusion, our results point to different Ptn-mediated regulatory mechanisms in normal hemostasis and in hematopoietic regeneration and in maintaining the balance of myeloid and lymphoid regeneration. Moreover, our results support the idea that microenvironmental Ptn regulates hematopoietic regeneration through ß-catenin-independent regulation of Ccnd1 and Cebpa.


Assuntos
Proteínas de Transporte/fisiologia , Proliferação de Células , Citocinas/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Células Estromais/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Western Blotting , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , RNA Mensageiro/genética , Regeneração , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/citologia , beta Catenina/genética , beta Catenina/metabolismo
10.
Nucleic Acids Res ; 39(Database issue): D724-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097782

RESUMO

Domain Interaction MAp (DIMA, available at http://webclu.bio.wzw.tum.de/dima) is a database of predicted and known interactions between protein domains. It integrates 5807 structurally known interactions imported from the iPfam and 3did databases and 46,900 domain interactions predicted by four computational methods: domain phylogenetic profiling, domain pair exclusion algorithm correlated mutations and domain interaction prediction in a discriminative way. Additionally predictions are filtered to exclude those domain pairs that are reported as non-interacting by the Negatome database. The DIMA Web site allows to calculate domain interaction networks either for a domain of interest or for entire organisms, and to explore them interactively using the Flash-based Cytoscape Web software.


Assuntos
Bases de Dados de Proteínas , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Interface Usuário-Computador
11.
J Cardiovasc Dev Dis ; 10(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975868

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia and typically occurs in elderly patients with other cardiovascular and extracardiac diseases. However, up to 15% of AF develops without any related risk factors. Recently, the role of genetic factors has been highlighted in this particular form of AF. AIMS: The aims of this study were to determine the prevalence of pathogenic variants in early-onset AF in patients without known disease-related risk factors and to identify any structural cardiac abnormalities in these patients. MATERIALS AND METHODS: We conducted exome sequencing and interpretation in 54 risk factor-free early-onset AF patients and further validated our findings in a similar AF patient cohort from the UK Biobank. RESULTS: Pathogenic/likely pathogenic variants were found in 13/54 (24%) patients. The variants were identified in cardiomyopathy-related and not arrhythmia-related genes. The majority of the identified variants were TTN gene truncating variants (TTNtvs) (9/13 (69%) patients). We also observed two TTNtvs founder variants in the analysed population-c.13696C>T p.(Gln4566Ter) and c.82240C>T p.(Arg27414Ter). Pathogenic/likely pathogenic variants were found in 9/107 (8%) individuals from an independent similar AF patient cohort from the UK Biobank. In correspondence with our Latvian patients, only variants in cardiomyopathy-associated genes were identified. In five (38%) of the thirteen Latvian patients with pathogenic/likely pathogenic variants, dilation of one or both ventricles was identified on a follow-up cardiac magnetic resonance scan. CONCLUSIONS: We observed a high prevalence of pathogenic/likely pathogenic variants in cardiomyopathy-associated genes in patients with risk factor-free early-onset AF. Moreover, our follow-up imaging data indicate that these types of patients are at risk of developing ventricular dilation. Furthermore, we identified two TTNtvs founder variants in our Latvian study population.

12.
Vaccines (Basel) ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851231

RESUMO

Some studies have found increased coronavirus disease-19 (COVID-19)-related morbidity and mortality in patients with primary antibody deficiencies. Immunization against COVID-19 may, therefore, be particularly important in these patients. However, the durability of the immune response remains unclear in such patients. In this study, we evaluated the cellular and humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in a cross-sectional study of 32 patients with primary antibody deficiency (n = 17 with common variable immunodeficiency (CVID) and n = 15 with selective IgA deficiency) and 15 healthy controls. Serological and cellular responses were determined using enzyme-linked immunosorbent assay and interferon-gamma release assays. The subsets of B and T lymphocytes were measured using flow cytometry. Of the 32 patients, 28 had completed the vaccination regimen with a median time after vaccination of 173 days (IQR = 142): 27 patients showed a positive spike-peptide-specific antibody response, and 26 patients showed a positive spike-peptide-specific T-cell response. The median level of antibody response in CVID patients (5.47 ratio (IQR = 4.08)) was lower compared to healthy controls (9.43 ratio (IQR = 2.13)). No difference in anti-spike T-cell response was found between the groups. The results of this study indicate that markers of the sustained SARS-CoV-2 spike-specific immune response are detectable several months after vaccination in patients with primary antibody deficiencies comparable to controls.

13.
Cancers (Basel) ; 15(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37296919

RESUMO

The aim of this study was to assess the power of the polygenic risk score (PRS) in estimating the overall genetic risk of women carrying germline BRCA1 pathogenic variants (PVs) c.4035del or c.5266dup to develop breast (BC) or ovarian cancer (OC) due to additional genetic variations. In this study, PRSs previously developed from two joint models using summary statistics of age-at-onset (BayesW model) and case-control data (BayesRR-RC model) from a genome-wide association analysis (GWAS) were applied to 406 germline BRCA1 PV (c.4035del or c.5266dup) carriers affected by BC or OC, compared with unaffected individuals. A binomial logistic regression model was used to assess the association of PRS with BC or OC development risk. We observed that the best-fitting BayesW PRS model effectively predicted the individual's BC risk (OR = 1.37; 95% CI = 1.03-1.81, p = 0.02905 with AUC = 0.759). However, none of the applied PRS models was a good predictor of OC risk. The best-fitted PRS model (BayesW) contributed to assessing the risk of developing BC for germline BRCA1 PV (c.4035del or c.5266dup) carriers and may facilitate more precise and timely patient stratification and decision-making to improve the current BC treatment or even prevention strategies.

14.
Trends Mol Med ; 29(12): 983-995, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806854

RESUMO

Multiomics studies offer accurate preventive and therapeutic strategies for atherosclerotic cardiovascular disease (ASCVD) beyond traditional risk factors. By using artificial intelligence (AI) and machine learning (ML) approaches, it is possible to integrate multiple 'omics and clinical data sets into tools that can be utilized for the development of personalized diagnostic and therapeutic approaches. However, currently multiple challenges in data quality, integration, and privacy still need to be addressed. In this opinion, we emphasize that joined efforts, exemplified by the AtheroNET COST Action, have a pivotal role in overcoming the challenges to advance multiomics approaches in ASCVD research, with the aim to foster more precise and effective patient care.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Inteligência Artificial , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Multiômica , Aterosclerose/diagnóstico , Aterosclerose/genética , Aterosclerose/terapia , Aprendizado de Máquina
15.
medRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546840

RESUMO

Background: Leukocyte progenitors derived from clonal hematopoiesis of undetermined potential (CHIP) are associated with increased cardiovascular events. However, the prevalence and functional relevance of CHIP in coronary artery disease (CAD) are unclear, and cells affected by CHIP have not been detected in human atherosclerotic plaques. Methods: CHIP mutations in blood and tissues were identified by targeted deep-DNA-sequencing (DNAseq: coverage >3,000) and whole-genome-sequencing (WGS: coverage >35). CHIP-mutated leukocytes were visualized in human atherosclerotic plaques by mutaFISH™. Functional relevance of CHIP mutations was studied by RNAseq. Results: DNAseq of whole blood from 540 deceased CAD patients of the Munich cardIovaScular StudIes biObaNk (MISSION) identified 253 (46.9%) CHIP mutation carriers (mean age 78.3 years). DNAseq on myocardium, atherosclerotic coronary and carotid arteries detected identical CHIP mutations in 18 out of 25 mutation carriers in tissue DNA. MutaFISH™ visualized individual macrophages carrying DNMT3A CHIP mutations in human atherosclerotic plaques. Studying monocyte-derived macrophages from Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET; n=941) by WGS revealed CHIP mutations in 14.2% (mean age 67.1 years). RNAseq of these macrophages revealed that expression patterns in CHIP mutation carriers differed substantially from those of non-carriers. Moreover, patterns were different depending on the underlying mutations, e.g. those carrying TET2 mutations predominantly displayed upregulated inflammatory signaling whereas ASXL1 mutations showed stronger effects on metabolic pathways. Conclusions: Deep-DNA-sequencing reveals a high prevalence of CHIP mutations in whole blood of CAD patients. CHIP-affected leukocytes invade plaques in human coronary arteries. RNAseq data obtained from macrophages of CHIP-affected patients suggest that pro-atherosclerotic signaling differs depending on the underlying mutations. Further studies are necessary to understand whether specific pathways affected by CHIP mutations may be targeted for personalized treatment.

16.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607005

RESUMO

Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe's largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α-expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Paxilina/genética , Paxilina/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Fenótipo , Linhagem Celular Tumoral , Neoplasias Pancreáticas
17.
Genes (Basel) ; 13(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328073

RESUMO

Large-scale genome-wide association studies have identified hundreds of single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively, these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-SNVs might present one potential source of this "missing heritability". Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive (angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant associations with body height. In line with this, we observed that CAD cases were slightly less physically active, and their average body height was ~2.00 cm lower compared to controls; both traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to exercise. Conclusions: We found only spurious associations between MT genome variation and HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be needed to conclusively determine the role of MT DNA in CAD.


Assuntos
Doença da Artéria Coronariana , Genoma Mitocondrial , Dióxido de Carbono , Doença da Artéria Coronariana/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Estudo de Associação Genômica Ampla , Humanos
18.
Front Microbiol ; 13: 627892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479632

RESUMO

Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and the main leading cause of morbidity and mortality worldwide, posing a huge socio-economic burden to the society and health systems. Therefore, timely and precise identification of people at high risk of CAD is urgently required. Most current CAD risk prediction approaches are based on a small number of traditional risk factors (age, sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are incompletely predictive across all patient groups, as CAD is a multi-factorial disease with complex etiology, considered to be driven by both genetic, as well as numerous environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D) and CVD/CAD indicates that the "one-size-fits-all" approach may not be efficient, due to significant variation in inter-individual responses. Recently, the gut microbiome has emerged as a potential and previously under-explored contributor to these variations. Hence, efficient integration of dietary and gut microbiome information alongside with genetic variations and clinical data holds a great promise to improve CAD risk prediction. Nevertheless, the highly complex nature of meals combined with the huge inter-individual variability of the gut microbiome poses several Big Data analytics challenges in modeling diet-gut microbiota interactions and integrating these within CAD risk prediction approaches for the development of personalized decision support systems (DSS). In this regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML) is opening intriguing perspectives, as these approaches are able to capture large and complex matrices of data, incorporating their interactions and identifying both linear and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML approaches and their different use cases for CAD risk prediction (2) modeling of the content, choice and impact of dietary factors on CAD risk; (3) classification of individuals by their gut microbiome composition into CAD cases vs. controls and (4) modeling of the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an outlook for putting it all together for improved CAD risk predictions.

19.
Front Med (Lausanne) ; 8: 626000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889583

RESUMO

Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.

20.
Biomolecules ; 11(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827683

RESUMO

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Non-coding RNAs have already been linked to CVD development and progression. While microRNAs (miRs) have been well studied in blood samples, there is little data on tissue-specific miRs in cardiovascular relevant tissues and their relation to cardiovascular risk factors. Tissue-specific miRs derived from Arteria mammaria interna (IMA) from 192 coronary artery disease (CAD) patients undergoing coronary artery bypass grafting (CABG) were analyzed. The aims of the study were 1) to establish a reference atlas which can be utilized for identification of novel diagnostic biomarkers and potential therapeutic targets, and 2) to relate these miRs to cardiovascular risk factors. Overall, 393 individual miRs showed sufficient expression levels and passed quality control for further analysis. We identified 17 miRs-miR-10b-3p, miR-10-5p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683 and miR-5701-significantly correlated with cardiovascular risk factors (correlation coefficient >0.2 in both directions, p-value (p < 0.006, false discovery rate (FDR) <0.05). Of particular interest, miR-5701 was positively correlated with hypertension, hypercholesterolemia, and diabetes. In addition, we found that miR-629-5p and miR-98-5p were significantly correlated with acute myocardial infarction. We provide a first atlas of miR profiles in IMA samples from CAD patients. In perspective, these miRs might play an important role in improved risk assessment, mechanistic disease understanding and local therapy of CAD.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Coração , Humanos , MicroRNAs , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA