Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 55(8): 3789-96, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27018603

RESUMO

Metal oxyfluoride compounds are gathering significant interest as cathode materials for lithium ion batteries at the moment because of their high theoretical capacity and resulting high energy density. In this regard, a new and direct approach is presented to synthesize phase-pure vanadium oxyfluoride (VO2F). The structure of VO2F was identified by Rietveld refinement of the powder X-ray diffraction (XRD) pattern. It crystallizes in a perovskite-type structure with disorder of the oxide and fluoride ions. The as-synthesized VO2F was tested as a cathode material for lithium ion batteries after being surface-coated with few-layer graphene. The VO2F delivered a first discharge capacity of 254 mA h g(-1) and a reversible capacity of 208 mA h g(-1) at a rate of C/20 for the first 20 cycles with an average discharge voltage of 2.84 V, yielding an energy density of 591 W h kg(-1). Improved rate capability that outperforms the previous report has been achieved, showing a discharge capacity of 150 mA h g(-1) for 1 C. The structural changes during lithium insertion and extraction were monitored by ex-situ XRD analysis of the electrodes discharged and charged to various stages. Lithium insertion results in an irreversible structural change of the anion lattice from (3)/4 cubic close packing to hexagonal close packing to accommodate the inserted lithium ions while keeping the overall space-group symmetry. For the first time we have revealed a structural change for the ReO3-type structure of as-prepared VO2F to the RhF3 structure after lithiation/delithiation, with structural changes that have not been observed in previous reports. Furthermore, the new synthetic approach described here would be a platform for the synthesis of new oxyfluoride compounds.

2.
J Nanosci Nanotechnol ; 12(8): 6608-14, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962796

RESUMO

Hydrogen storage in materials is of significant importance in the present scenario of depleting conventional energy sources. Porous solids such as activated carbon or nanostructured carbon materials have promising future as hydrogen storage media. The hydrogen storage capacity in nanostructured carbon materials can be further enhanced by atomic hydrogen spillover from a supported catalyst. In the present work, the hydrogen storage properties of nitrogen doped graphene nanoplatelets (N-GNP) and palladium decorated nitrogen doped graphene nanoplatelets (Pd/N-GNP) have been investigated. The results show that hydrogen uptake capacity of nitrogen doped graphene nanoplatelets and palladium decorated nitrogen doped graphene nanoplatelets at pressure 32 bar and temperature 25 degrees C is 0.42 wt% and 1.25 wt% respectively. The dispersion of palladium nanoparticles increases the hydrogen storage capacity of nitrogen doped graphene nanoplatelets by 0.83 wt%. This may be due to high dispersion of palladium nanoparticles and strong adhesion between metal and graphene nanoplatelets over the surface of N-GNP, which enhances the spillover mechanism. Thus, an increase in the hydrogen spillover effect and the binding energy between metal nanoparticles and supporting material achieved by nitrogen doping has been observed to result in a higher hydrogen storage capacity of pristine GNP.

3.
J Colloid Interface Sci ; 488: 309-316, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27838555

RESUMO

Efficient and cost effective counter electrode (CE) is pre-requisite for the commercialization of dye-sensitized solar cell (DSSC). Present work investigates ultra small size platinum-iron alloy nanoparticles dispersed over nitrogen-doped graphene (PtFe/NG) as an effective counter electrode for DSSC. Hereby we achieve low loading of Pt by alloying with Fe accompanied by superior electrocatalytic activity towards the iodide-triiodide (I-/I3-) mechanism. Enhancement in electrocatalytic performance of PtFe/NG has been shown by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization analysis. PtFe/NG counter electrode exhibits higher power conversion efficiency (∼6.12%) with lower charge transfer resistance, which helps in faster diffusion of I-/I3- ions as compared to NG and Pt/NG counter electrodes. The increased electrocatalytic activity of PtFe/NG is due to the collective effect of intrinsic electronic effects by alloying, uniform dispersion of small PtFe alloy nanoparticles over nitrogen doped graphene, and additional catalytic sites offered by nitrogen-doped graphene.

4.
ACS Appl Mater Interfaces ; 8(3): 2166-72, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26716574

RESUMO

Borate chemistry offers attractive features for iron based polyanionic compounds. For battery applications, lithium iron borate has been proposed as cathode material because it has the lightest polyanionic framework that offers a high theoretical capacity. Moreover, it shows promising characteristics with an element combination that is favorable in terms of sustainability, toxicity, and costs. However, the system is also associated with a challenging chemistry, which is the major reason for the slow progress in its further development as a battery material. The two major challenges in the synthesis of LiFeBO3 are in obtaining phase purity and high electrochemical activity. Herein, we report a facile and scalable synthesis strategy for highly pure and electrochemically active LiFeBO3 by circumventing stability issues related to Fe(2+) oxidation state by the right choice of the precursor and experimental conditions. Additionally, we carried out a Mössbauer spectroscopic study of electrochemical charged and charged-discharged LiFeBO3 and reported a lithium diffusion coefficient of 5.56 × 10(-14) cm(2) s(-1) for the first time.

5.
Nanoscale ; 8(6): 3296-306, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26542750

RESUMO

Here we report for the first time the development of a Mg rechargeable battery using a graphene-sulfur nanocomposite as the cathode, a Mg-carbon composite as the anode and a non-nucleophilic Mg based complex in tetraglyme solvent as the electrolyte. The graphene-sulfur nanocomposites are prepared through a new pathway by the combination of thermal and chemical precipitation methods. The Mg/S cell delivers a higher reversible capacity (448 mA h g(-1)), a longer cyclability (236 mA h g(-1) at the end of the 50(th) cycle) and a better rate capability than previously described cells. The dissolution of Mg polysulfides to the anode side was studied by X-ray photoelectron spectroscopy. The use of a graphene-sulfur composite cathode electrode, with the properties of a high surface area, a porous morphology, a very good electronic conductivity and the presence of oxygen functional groups, along with a non-nucleophilic Mg electrolyte gives an improved battery performance.

6.
Nanoscale ; 5(11): 5109-18, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23644681

RESUMO

The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.


Assuntos
Ligas/química , Grafite/química , Ferro/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Nitrogênio/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Oxirredução , Óxidos/química , Platina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA